首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.  相似文献   

2.
Abstract. Here I present a deterministic model of the coevolution of parasites with the acquired immunity of their hosts, a system in which coevolutionary oscillations can be maintained. These dynamics can confer an advantage to sexual reproduction within the parasite population, but the effect is not strong enough to outweigh the twofold cost of sex. The advantage arises primarily because sexual reproduction impedes the response to fluctuating epistasis and not because it facilitates the response to directional selection—in fact, sexual reproduction often slows the response to directional selection. Where the cost of sexual reproduction is small, a polymorphism can be maintained between the sexuals and the asexuals. A polymorphism is maintained in which the advantage gained due to recombination is balanced by the cost of sex. At much higher costs of sex, a polymorphism between the asexual and sexual populations can still be maintained if the asexuals do not have a full complement of genotypes available to them, because the asexuals only outcompete those sexuals with which they share the same selected alleles. However, over time we might expect the asexuals to amass the full array of genotypes, thus permanently eliminating sexuals from the population. The sexuals may avoid this fate if the parasite population is finite. Although the model presented here describes the coevolution of parasites with the acquired immune responses of their hosts, it can be compared with other host-parasite models that have more traditionally been used to investigate Red Queen theories of the evolution of sex.  相似文献   

3.
We examine the behavior of sexual and asexual populations in modular multipeaked fitness landscapes and show that sexuals can systematically reach different, higher fitness adaptive peaks than asexuals. Whereas asexuals must move against selection to escape local optima, sexuals reach higher fitness peaks reliably because they create specific genetic variants that "skip over" fitness valleys, moving from peak to peak in the fitness landscape. This occurs because recombination can supply combinations of mutations in functional composites or "modules," that may include individually deleterious mutations. Thus when a beneficial module is substituted for another less-fit module by sexual recombination it provides a genetic variant that would require either several specific simultaneous mutations in an asexual population or a sequence of individual mutations some of which would be selected against. This effect requires modular genomes, such that subsets of strongly epistatic mutations are tightly physically linked. We argue that such a structure is provided simply by virtue of the fact that genomes contain many genes each containing many strongly epistatic nucleotides. We briefly discuss the connections with "building blocks" in the evolutionary computation literature. We conclude that there are conditions in which sexuals can systematically evolve high-fitness genotypes that are essentially unevolvable for asexuals.  相似文献   

4.
The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single‐nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype (‘1A’) was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.  相似文献   

5.
Haag CR  Roze D 《Genetics》2007,176(3):1663-1678
In diploid organisms, sexual reproduction rearranges allelic combinations between loci (recombination) as well as within loci (segregation). Several studies have analyzed the effect of segregation on the genetic load due to recurrent deleterious mutations, but considered infinite populations, thus neglecting the effects of genetic drift. Here, we use single-locus models to explore the combined effects of segregation, selection, and drift. We find that, for partly recessive deleterious alleles, segregation affects both the deterministic component of the change in allele frequencies and the stochastic component due to drift. As a result, we find that the mutation load may be far greater in asexuals than in sexuals in finite and/or subdivided populations. In finite populations, this effect arises primarily because, in the absence of segregation, heterozygotes may reach high frequencies due to drift, while homozygotes are still efficiently selected against; this is not possible with segregation, as matings between heterozygotes constantly produce new homozygotes. If deleterious alleles are partly, but not fully recessive, this causes an excess load in asexuals at intermediate population sizes. In subdivided populations without extinction, drift mostly occurs locally, which reduces the efficiency of selection in both sexuals and asexuals, but does not lead to global fixation. Yet, local drift is stronger in asexuals than in sexuals, leading to a higher mutation load in asexuals. In metapopulations with turnover, global drift becomes again important, leading to similar results as in finite, unstructured populations. Overall, the mutation load that arises through the absence of segregation in asexuals may greatly exceed previous predictions that ignored genetic drift.  相似文献   

6.
Justyna Wolinska  Curtis M. Lively 《Oikos》2008,117(11):1637-1646
Sex is paradoxical, because asexuals should replace their sexual ancestors by avoiding the demographic cost of producing males (hereafter referred to as the cost‐of‐males). Despite the large body of theoretical and empirical work dealing with the paradox of sex, the cost‐of‐males assumption has been rarely tested. In the present study, we tested the cost‐of‐males assumption in the cladoceran Daphnia pulex. Populations of this species consist of both cyclically parthenogenetic (i.e. sexuals) and obligately parthenogenetic (i.e. asexuals) lineages. In addition, some of the asexual lineages produce only female offspring, whereas others produce functional males, which can mate with sexual females. We compared the reproductive investment of sexuals, male‐producing asexuals, and non‐male‐producing asexuals when raised separately under various environmental conditions. We also determined the outcome of competition between pair‐wise combinations of these reproductive modes. The cost of males was evident when sexual and asexual females were raised separately: sexuals produced fewer female offspring. However, there was no cost of males when reproductive modes were raised in pairs, as sexuals won the competition with asexuals. Our results directly relate to the field conditions experienced by D. pulex. Sexuals might suffer the cost of males at the beginning of the season, when resource competition is low; but when conditions deteriorate as the population approaches carrying capacity, sexuals seem to be better competitors in spite of male production.  相似文献   

7.
Most explanations for the evolutionary maintenance of sex depend on the assumption that sex produces variation by recombining parental haplotypes in the offspring. Therefore, meiosis is expected to be useful only in heterozygotes. We tested this assumption by competing sexual strains of yeast against constitutive asexuals in a hot (37 degrees C) culture for 500 generations, in either heterozygous or homozygous genetic backgrounds. We found that there was an initial cost of sex for all the sexual strains, which was indicated by a sharp increase in the proportion of asexuals after the induction of sex. The cost was larger in the heterozygotes than in the homozygotes, probably because of recombinational load. However, in two of the three heterozygote backgrounds, after the initial success of the asexuals, the remaining sexuals eventually drove them out of the population. These two heterozygotes also suffered the largest initial cost of sex. In the other heterozygote and in the three homozygote backgrounds it appeared to be a matter of chance whether sexuals or asexuals won. The average relative fitness increased in all the strains, but the increase was largest in the two strains that showed both the clearest advantage and the largest cost of sex. We conclude that these results are consistent with the traditional view that sex has a short-term cost but a long-term benefit.  相似文献   

8.
What advantage do sexually reproducing organisms gain from their mode of reproduction that compensates for their twofold loss in reproductive rate relative to their asexual counterparts? One version of the Red Queen hypothesis suggests that selective pressure from parasites is strongest on the most common genotype in a population, and thus genetically identical clonal lineages are more vulnerable to parasitism over time than genetically diverse sexual lineages. Our surveys of the ectoparasites of an asexual gecko and its two sexual ancestral species show that the sexuals have a higher prevalence, abundance, and mean intensity of mites than asexuals sharing the same habitat. Our experimental data indicate that in one sexual/asexual pair this pattern is at least partly attributable to higher attachment rates of mites to sexuals. Such a difference may occur as a result of exceptionally high susceptibility of the sexuals to mites because of their low genetic diversity (relative to other more-outbred sexual species) and their potentially high stress levels, or as a result of exceptionally low susceptibility of the asexuals to mites because of their high levels of heterozygosity.  相似文献   

9.
In certain planarian species that are able to switch between asexual and sexual reproduction, determining whether a sexual has the ability to switch to the asexual state is problematic, which renders the definition of sexuals controversial. We experimentally show the existence of two sexual races, acquired and innate, in the planarian Dugesia ryukyuensis. Acquired sexuals used in this study were experimentally switched from asexuals. Inbreeding of acquired sexuals produced both innate sexuals and asexuals, but inbreeding of innate sexuals produced innate sexuals only and no asexuals. Acquired sexuals, but not innate sexuals, were forced to become asexuals by ablation and regeneration (asexual induction). This suggests that acquired sexuals somehow retain asexual potential, while innate sexuals do not. We also found that acquired sexuals have the potential to develop hyperplastic and supernumerary ovaries, while innate sexuals do not. In this regard, acquired sexuals were more prolific than innate sexuals. The differences between acquired and innate sexuals will provide a structure for examining the mechanism underlying asexual and sexual reproduction in planarians.  相似文献   

10.
As only females contribute directly to population growth, sexual females investing equally in sons and daughters experience a two-fold cost relative to asexuals producing only daughters. Typically, researchers have focused on benefits of sex that can counter this 'cost of males' and thus explain its predominance. Here, we instead ask whether asexuals might also pay a cost of males by quantifying the rate of son production in 45 experimental populations ('lineages') founded by obligately asexual female Potamopyrgus antipodarum. This New Zealand snail is a powerful model for studying sex because phenotypically similar sexual and asexual forms often coexist, allowing direct comparisons between sexuals and asexuals. After 2 years of culture, 23 of the 45 lineages had produced males, demonstrating that asexual P. antipodarum can make sons. We used maximum-likelihood analysis of a model of male production in which only some lineages can produce males to estimate that ~50% of lineages have the ability to produce males and that ~5% of the offspring of male-producing lineages are male. Lineages producing males in the first year of the experiment were more likely to make males in the second, suggesting that some asexual lineages might pay a cost of males relative to other asexual lineages. Finally, we used a simple deterministic model of population dynamics to evaluate how male production affects the rate of invasion of an asexual lineage into a sexual population, and found that the estimated rate of male production by asexual P. antipodarum is too low to influence invasion dynamics.  相似文献   

11.
Poor male function favours the coexistence of sexual and asexual relatives   总被引:1,自引:0,他引:1  
Britton  & Mogie 《Ecology letters》2001,4(2):116-121
Classical models of the evolution of sex typically assume that an asexual lineage, once derived, is reproductively separate from the sexual lineage from which it was derived. However, many asexuals, including hermaphrodite plants, produce male gametes capable of fertilising the eggs of co-existing sexuals, giving rise to sexual and asexual progeny. This male function of asexuals may be poor, and it has been proposed that this could favour sexuality and adversely affect the successful establishment of asexual lineages. We show that things are more complicated than this; the effect is frequency-dependent and poor male function may sometimes favour asexuality. In a spatially distributed population of flowering plants, it can prevent the successful invasion of either reproductive mode by the other via long-range dispersal. Consequently invasions must be driven by short-range dispersal, and are therefore extremely slow. Thus poor male function favours long-term co-existence of sexuals and asexuals. When coupled with the superior ability of asexuals to colonise virgin territory after an Ice Age, it may explain current ecological distribution patterns.  相似文献   

12.
Where sexual and asexual forms coexist within a species, the asexuals are often found to be prevalent in marginal habitats. This asexual distribution pattern has received evolutionary attention linked to the paradox of sex. In many marine species, there is a distributional trend of asexual modes being more common in lower salinity waters regarded as the ecogeographic marginal, being explained by negative effects of low salinities on sexual reproductive success. However, the distribution pattern of estuarine species recently adapted to low salinity waters has remained unknown. The brackish macroalga Ulva prolifera being a major benthic component of estuarine ecosystems includes a sexual variant and obligate asexual variants by means of motile spores. We examined the sexual–asexual distribution pattern of this alga along a salinity gradient in river estuaries. Surprisingly, opposite to the distributional trend of marine organisms, the results clearly showed the persistent predominance of sexuals in the lower salinity reaches than the asexuals. In addition, a frequent alternating of dioecious gametophytes and sporophytes in the sexual population was observed, suggesting the sexual reproductive process would be robustly performed in the low salinity waters. Considering U. prolifera had evolved from the ancestral marine species to become a true estuarine species of which the core habitat is the low salinity reaches, in a broad sense its sexual–asexual distribution pattern would be involved in asexual marginal occupations of the species range previously reported in other organisms. Based on the frozen niche variation model, we can give a concise explanation for the evolutionary process of this pattern; multiple asexuals with frozen genotypic variation had arisen from sexual ancestors undergoing low salinity adaptation and share the estuarine habitat with the sexuals at present.  相似文献   

13.
It has recently been argued that because the genetic load borne by an asexual species resulting from segregation, relative to a comparable sexual population, is greater than two, sex can overcome its twofold disadvantage and succeed. We evaluate some of the assumptions underlying this argument and discuss alternative assumptions. Further, we simulate the dynamics of competition between sexual and asexual types. We find that for populations of size 100 and 500 the advantages of segregation do not outweigh the cost of producing males. We conclude that, at least for small populations, drift and the cost of sex govern the evolution of sexuality, not selection or segregation. We believe, however, that if sexual and asexual populations were isolated for a sufficiently long period, segregation might impart a fitness advantage upon sexuals that could compensate for the cost of sex and allow sexuals to outcompete asexuals upon their reunion.  相似文献   

14.
The evolution and maintenance of sexual reproduction is still one of the major unresolved problems in evolutionary biology. Sexual reproduction is fraught with a number of costs as compared to asexual reproduction. For example, sexuals have to produce males, which–given a 1:1 sex ratio—results in a two-fold advantage for asexuals that do not produce males. Consequently, asexuals will outperform and replace sexuals over time assuming everything else is equal. Nonetheless, a few cases of closely related asexuals and sexuals have been documented to coexist stably in natural systems. We investigated the presence of a two-fold cost in a unique system of three closely related fish species: the asexual Amazon Molly (Poecilia formosa), and two sexual species, Sailfin Molly (P. latipinna) and Atlantic Molly (P. mexicana). Amazon Molly reproduce gynogenetically (by sperm dependent parthenogenesis) and always coexist with one of the sexual species, which serves as sperm donor. In the laboratory, we compared reproductive output between P. formosa and P. mexicana as well as P. formosa and P. latipinna. We found no differences in the fecundity in either comparison of a sexual and the asexual species. Under the assumption of a 1:1 sex ratio, the asexual Amazon Molly should consequently have a full two-fold advantage and be able to outcompete sexuals over time. Hence, the coexistence of the species pairs in nature presents a paradox still to be solved.  相似文献   

15.
In several asexual taxa, reproduction requires mating with related sexual species to stimulate egg development, even though genetic material is not incorporated from the sexuals (gynogenesis). In cases in which gynogens do not invest in male function, they can potentially have a twofold competitive advantage over sexuals because the asexuals avoid the cost of producing males. If unmitigated, however, the competitive success of the asexuals would ultimately lead to their own demise, following the extinction of the sexual species that stimulate egg development. We have studied a model of mate choice among sexual individuals and asexual gynogens, where males of the sexual species preferentially mate with sexual females over gynogenetic females, to determine if such mating preferences can stably maintain both gynogenetic and sexual individuals within a community. Our model shows that stable coexistence of gynogens and their sexual hosts can occur when there is variation among males in the degree of preference for mating with sexual females and when pickier males pay a higher cost of preference.  相似文献   

16.
Parasites and sexual reproduction in psychid moths   总被引:4,自引:0,他引:4  
Persistence of sexual reproduction among coexisting asexual competitors has been a major paradox in evolutionary biology. The number of empirical studies is still very limited, as few systems with coexisting sexual and strictly asexual lineages have been found. We studied the ecological mechanisms behind the simultaneous coexistence of a sexually and an asexually reproducing closely related species of psychid moth in Central Finland between 1999 and 2001. The two species compete for the same resources and are often infected by the same hymenopteran parasitoids. They are extremely morphologically and behaviorally similar and can be separated only by their reproductive strategy (sexual vs. asexual) or by genetic markers. We compared the life-history traits of these species in two locations where they coexist to test predictions of the cost-of-sex hypothesis. We did not find any difference in female size, number of larvae, or offspring survival between the sexuals and asexuals, indicating that sexuals are subject to cost of sex. We also used genetic markers to check and exclude the possibility of Wolbachia bacteria infection inducing parthenogenesis. None of the samples was infected by Wolbachia and, thus, it is unlikely that these bacteria could affect our results. We sampled 38 locations to study the prevalence of parasitoids and the moths' reproductive strategy. We found a strong positive correlation between prevalence of sexual reproduction and prevalence of parasitoids. In locations where parasitoids are rare asexuals exist in high densities, whereas in locations with a high parasitoid load the sexual species was dominant. Spatial distribution alone does not explain the results. We suggest that the parasite hypothesis for sex may offer an explanation for the persistence of sexual moths in this system.  相似文献   

17.
Many metazoans convert the reproductive modes presumably depending upon the environmental conditions and/or the phase of life cycle, but the mechanisms underlying the switching from asexual to sexual reproduction, and vice versa, remain unknown. We established an experimental system, using an integrative biology approach, to analyze the mechanism in the planarian, Dugesia ryukyuensis (Kobayashi et al., 1999). Worms of exclusively asexual clone (OH strain) of the species gradually develop ovaries, testes and other sexual organs, then copulate and eventually lay cocoons filled with fertilized eggs, if they are fed with sexually mature worms of Bdellocephala brunnea (an exclusively oviparous species). This suggests the existence of a sexualizing substance(s) in sexually mature worms. Random inbreeding of experimentally sexualized worms (acquired sexuals) produces an F1 population of spontaneous sexuals (innate sexuals) and asexuals in a ratio of approximately 2:1. All regenerants from various portions of innate sexuals become sexuals. In the case of acquired sexuals, head fragments without sexual organs regenerated into asexuals though regenerants from other portions became sexuals. Thus, we conclude that neoblasts, the totipotent stem cells in the planarians, of acquired sexuals remain "asexual" and the worms require external supply of a sexualizing substance for the differentiation of sexual organs and gametes. On the other hand, some, if not all, neoblasts in innate sexuals are somehow "sexual" and do not require external supply of a sexualizing substance for the eventual differentiation of themselves and/or other neoblasts into sexual organs and gametes. It is also shown that sexuality in acquired sexuals is maintained by the putative sexualizing substance(s) of their own. The sexualization is closely coupled with cessation of fission, and the worms seem to have an unknown way of controlling the karyotype. Our integrative approach integrates multiple fields of study, including classic breeding, regeneration, and genetics experiments, as well as karyotyping, and biochemical and molecular biological analyses; none of which would have revealed much about the intricate mechanisms that regulate sex and fission in these animals.  相似文献   

18.
In the midwestern United States the Daphnia pulex complex consists of a mosaic of sexual and asexual populations, providing a useful model system for studying the evolutionary forces underlying the maintenance of sex. One asexual and two sexual populations were surveyed for genetic variation for isozymes, mitochondrial DNA, and life-history characters. While the sexual populations exhibited substantial levels of genetic variance for fitness characters, no variation was detected in the asexual population at any level. However, a parallel survey among asexual clones derived from other ponds revealed large amounts of quantitative variation among clones, even among those with the same molecular profile. As a group, the asexuals are more variable for life histories than are the sexual populations. The molecular data indicate a relatively recent origin for the extant asexual D. pulex. The polyphyletic origin of these clones, combined with their microevolutionary potential, provides an explanation for their broad geographic distribution. The distribution of sex in the complex cannot be explained with the standard models that assume an invariant asexual population in reproductive isolation from the parental species. Although the frequency of asexuality may be driven by the spread of a sex-limited meiosis suppressor through sexual populations, the complete displacement of sexuality may be prevented by ecological distinctions between the two classes of individuals. On average, the asexuals are larger but produce smaller clutches than the sexuals.  相似文献   

19.
Diversification in sexual and asexual organisms   总被引:4,自引:0,他引:4  
Abstract Sexual reproduction has long been proposed as a major factor explaining the existence of species and species diversity. Yet, the importance of sex for diversification remains obscure because of a lack of critical theory, difficulties of applying universal concepts of species and speciation, and above all the scarcity of empirical tests. Here, we use genealogical theory to compare the relative tendency of strictly sexual and asexual organisms to diversify into discrete genotypic and morphological clusters. We conclude that asexuals are expected to display discrete clusters similar to those found in sexual organisms. Whether sexuals or asexuals display stronger clustering depends on a number of factors, but in at least some scenarios asexuals should display a stronger pattern. Confounding factors aside, the only explanation we identify for stronger patterns of diversification in sexuals than asexuals is if the faster rates of adaptive change conferred by sexual reproduction promote greater clustering. Quantitative comparisons of diversification in related sexual and asexual taxa are needed to resolve this issue. The answer should shed light not only on the importance of the different stages leading to diversification, but also on the adaptive consequences of sex, still largely unexplored from a macroevolutionary perspective.  相似文献   

20.
In many plant and animal species, sexual and asexual forms have different geographical distributions ('geographic parthenogenesis'). The common dandelion Taraxacum officinale s.l. provides a particularly clear example of differing distributions: diploid sexuals are restricted to southern and central Europe, while triploid asexuals occur across Europe. To get a better understanding of the factors underlying this pattern, we studied the distribution and demography of sexuals and asexuals in a mixed population that was located at the northern distribution limit of the sexuals. In this population three adjacent, contrasting microhabitats were found: a foreland and south and north slopes of a river dike. Comparative analyses of the distribution, phenology and demography indicated that sexuals had a stronger preference for the south slope than did asexuals. We therefore propose that the large-scale geographic parthenogenesis in T. officinale is shaped by an environmental gradient which acts upon the sexuals.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 205–218.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号