首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective: Very limited information regarding the cardiac molecular mechanism in obesity is available. The purpose of this study was to evaluate the cardiac Fas receptor‐dependent (type I) apoptotic pathway in obese Zucker rats. Research Methods and Procedures: Sixteen obese Zucker rats were studied at 5 to 6 months of age, and 16 age‐matched lean Zucker rats served as controls. Heart weight index, myocardial architecture, key components of the Fas receptor‐dependent apoptotic pathway, apoptotic activity, and fibrosis in the excised left ventricle of rats were measured by weight scales, hematoxylin and eosin staining, Western blotting, TUNEL assay, and Masson trichrome staining. Results: Body weight, whole heart weight, left ventricular weight, ratio of whole heart weight to tibia length, percentage of TUNEL‐positive cardiac myocytes, and percentage of cardiac fibrosis were significantly increased in the obese group. Cardiomyocyte disarray and increased cardiac interstitial space were observed in obese rats. Protein levels of Fas ligand, Fas death receptors, and Fas‐associated Death Domain were all significantly increased in the obese group. In addition, pro‐caspase‐8 and pro‐caspase‐3 were significantly decreased, whereas activated caspase‐8 and activated caspase‐3 were significantly increased in the obese group, which implies that pro‐forms of caspase‐8 and caspase‐3 were cleaved into active‐forms caspase‐8 and caspase‐3. Conclusions: Cardiac Fas receptor‐dependent apoptotic pathways were more activated in obese rats’ hearts, which may provide one of the possible apoptotic mechanisms for developing cardiac abnormality in obesity.  相似文献   

2.
3.
BackgroundThe levels of a number of essential and toxic trace elements in organs and tissues are affected by the disruptions in body homeostasis caused by obesity. Some of these elements may also be influenced by the consumption of biologically active substances of polyphenolic origin, which possess potent abilities to complex with transition metal ions.AimsThe aim of this study was to determine the content of essential and toxic trace elements in Wistar outbred and hereditary obese Zucker Leprfa (Z) rats consuming a standard balanced diet or hypercaloric diet with excess fat and fructose, supplemented with quercetin or not supplemented.Materials and methodsMale Wistar and Z rats were fed a control AIN-93M-based semi-synthetic diet or a high-fat-high-carbohydrate diet (HFCD, with 30% fat by weight and 20% fructose provided in the drinking water). A portion of the animals in each line and diet group was administered quercetin at 50 mg/kg body weight. Essential trace elements were included in the diets as a high-purity salt mixture. After the termination of feeding on day 63, the livers, kidneys, and brains of the rats were excised and the content of 16 elements (Fe, Mg, Cu, Mn, Co, Se, Zn, Cr, Ni, Al, Cd, As, Pb, V, Cs, and Ag) was measured by inductively coupled plasma mass spectrometry (ICP-MS).ResultsIn the livers of the Z rats, the contents of Co, Zn, Mg, Fe, Se, and V were reduced and the content of Cr was increased compared to that of the Wistar rats. Supplementation with quercetin significantly decreased liver Fe, V, and Se content, which was more noticeable in the Wistar rats than in the Z rats. In kidneys of Z rats consuming control diet, the contents of Co, Cu, and Cs were decreased whereas those of Ni, Al, and Se were increased compared with the contents in the Wistar rats. The same trend was observed with HFCD feeding except for Cs content. Quercetin reduced kidney V content in both rat lines fed both diets, whereas it reduced Se and Cs only in the Z rats fed control diet. In the brains of the Z rats, a large increase was observed in some trace elements including Pb, Cd, Al, Cr, Ni, Fe, and V compared with the levels in the Wistar rat brains. Supplementation of the control diet with quercetin decreased Al and Ni in the brains of the Z rats.ConclusionThere were significant differences in the mineral content of organs between the Wistar and Z rats, with different propensities for obesity. Moreover some of these effects had no straightforward association with decreased feed consumption or hepatic fat accumulation. When introduced into the diets, quercetin affected the content of essential and toxic elements, but with ambiguous physiological significance. Thus, indicators of essential and toxic trace elements deserve to be used in the protocols of preclinical as well as clinical trials of biologically active substances and food supplements.  相似文献   

4.
Tzeng TF  Lo CY  Cheng JT  Liu IM 《Life sciences》2007,80(16):1508-1516
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.  相似文献   

5.
Adán  C.  Grasa  M.M.  Cabot  C.  Esteve  M.  Vilà  R.  Masanés  R.  Estruch  J.  Fernández-López  J.A.  Remesar  X.  Alemany  M. 《Molecular and cellular biochemistry》1999,197(1-2):109-115
Young female Zucker fa/fa rats of 370-430 g were implanted with osmotic minipumps releasing 3.5 mol/dayúkg of estrone oleate in liposomes (Merlin-2) into the bloodstream for up to 14 days. Merlin-2 induced a sustained loss of appetite, and a decrease in body weight of 3.5%, which contrasts with the 8.2% increase in controls during the period studied. Plasma insulin, glucose and urea decreased, and liver glycogen increased with Merlin-2 treatment. Plasma ACTH and corticosterone increased to a maximum at the end of the experiment. The expression of the ob gene in adipose tissue was unchanged, and plasma leptin levels were also unchanged by treatment. Estrone levels increased more than 1500-fold, and estrone oleate rose 100-fold during treatment. The fact that estrone oleate had no effect on the leptin levels or expression in obese rats, in contrast with the marked inhibition observed in the lean suggests that the functionality of the leptin receptor is essential for estrone oleate inhibition of the ob gene. This also suggests that leptin may control ob gene expression in white adipose tissue and that estrone oleate may activate this process. The slimming effect of estrone oleate is, thus, not directly dependent on leptin, since both normoleptinemic and hyperleptinemic animals lose fat following treatment nor are the effects on appetite and energy expenditure mediated by leptin. However, leptin levels and the expression of the ob gene are directly linked with estrone oleate function. A possible involvement of leptin in estrone oleate action is postulated. The results support the participation of estrone oleate in the control of body weight and hint at the complexity of its regulation by leptin and glucocorticoids.  相似文献   

6.
Obese Zucker rats (fa/fa) are characterized by inadequate leptin signaling caused by a mutation in the leptin receptor gene. Obese Zucker females are infertile and hyporesponsive to the inductive effects of ovarian hormones on sexual behaviors. Leptin treatment reverses aspects of reproductive dysfunction due to perturbations in energy balance in other animal models. Our first experiment tested the hypothesis that intracerebroventricular (icv) leptin administration would enhance the display of sexual behaviors in obese Zucker females. A second experiment compared lean and obese Zucker females' responses to leptin, during fed and fasted conditions. Ovariectomized (OVX) Zucker rats were implanted with lateral ventricular cannulae. In Experiment 1, fasted, obese females received estradiol benzoate, progesterone, and icv injections of 3, 18, or 36 microg murine leptin or vehicle. Leptin administration reduced food intake, but did not enhance sexual behaviors. In Experiment 2, steroid-replaced, OVX lean and obese females (from a different source than those in Experiment 1) received icv injections of vehicle or 3 or 36 microg leptin under fed and fasted conditions. Leptin treatment reduced food intake and weight gain in the fed, but not the fasted, condition in both genotypes. Sexual receptivity and locomotion were not affected, but icv leptin injections reduced proceptive behaviors in ad libitum-fed rats. These data confirm previous reports that centrally administered leptin decreases food intake and weight gain in obese Zucker rats; results from Experiment 2 suggest that lean and obese females are similarly responsive to these actions of leptin. Contrary to our hypothesis, leptin treatment did not stimulate sexual behaviors; rather, the hormone appears to inhibit the display of sexual proceptivity in ad libitum-fed lean and obese Zucker female rats.  相似文献   

7.
Objective: Alterations in the renin angiotensin system, cardiac lipotoxicity, and left ventricular (LV) dysfunction have been reported in obese rats. The present study examined whether angiotensin‐converting enzyme inhibition could ameliorate lipid deposition and ventricular function in the myocardium of obese Zucker rats (OZRs). Research Methods and Procedures: For 6 months, rats were treated as follows: Group (G) 1, OZR, no treatment; G2, OZR + ramipril (R); G3, OZR + amlodipine (AML); and G4, lean Zucker rats. LV function was assessed by echocardiogram and lipid deposits in cardiomyocytes (LDCM) by light microscopy using Oil red O. Results: At the end of the experiment, both OZR + R and OZR + AML groups presented similar reduction in blood pressure in comparison with untreated OZR (p < 0.01). OZR with R presented lower insulin‐to‐glucose ratio and lower serum triglycerides and cholesterol when compared with both untreated OZR and OZR with AML (p < 0.01). Fractional shortening by echocardiogram was as follows: G1, 25.4 ± 3.8 (vs. G2 and G4, p < 0.05); G2, 37.2 ± 2.4; G3, 29.3 ± 4.4 (vs. G2 and G4, p < 0.05); and G4, 40.8 ± 2.3. Percentage LDCM was as follows: G1, 12.4 ± 2.7 (vs. G2 and G4, p < 0.05); G2, 0.8 ± 0.2; G3, 11.1 ± 2.1 (vs. G2 and G4, p < 0.05); and G4, 0.1 ± 0.1. There was a negative correlation between fractional shortening and LDCM percentage in OZR (r = ?0.93) and in OZR + AML (r = ?0.87). Discussion: AML reduced blood pressure significantly; however, it failed to modify both metabolic parameters and LDCM. In contrast, R showed a substantial reduction in LDCM, together with LV function preservation.  相似文献   

8.
Cholecystokinin (CCK), a hormone affecting several gastrointestinal functions, has also been shown to elicit satiety and affect daily meal patterns. Since Zucker obese rats are less sensitive to the satiety effects of CCK, two experiments were designed to determine if they are also less sensitive to the gastric emptying and intestinal transit rate effects of CCK. In the first experiment phenol red was administered to 5.5 hr fasted rats 15 minutes after intraperitoneal injection of CCK-8 or saline. Rats were sacrificed after 30 minutes, the stomach and small intestine were removed, and phenol red content was measured. More phenol red was in the stomach of obese but not lean rats treated with CCK-8. The rate of transit of the contents of the small intestine was increased by CCK-8 and the percent of phenol red in the fourth quarter of the small intestine was greater in obese than lean rats (91 vs 37%, p<0.05). In the second experiment gastrointestinal transit of ferric oxide was measured during the light and dark phases of the diurnal cycle, and when obese rats were ad lib or yoke-fed to lean pair-mates. Total gastrointestinal transit time of the ferric oxide was decreased 15% when CCK-8 was administered to yoke-fed obese rats in either the light or dark portions of the diurnal cycle but was not affected in ad lib-fed obese rats or lean rats. Thus, while Zucker obese rats are less sensitive to satiety effects of CCK, they appear to be more sensitive to the gastrointestinal effects of CCK, and therefore it is not clear what role these gastrointestinal responses have on the feeding behavior responses.  相似文献   

9.
Summary— Genetically obese Zucker (fa/fa) rats were used as an experimental model to study the effects of hypolipidemic agents on peroxisome proliferation; comparison was made with Zucker lean phenotype (Fa/?) and Sprague-Dawley strain/phenotype. The pharmacokinetics of a single administration of ciprofibrate (1 or 3 mg/kg), appeared to be similar in all strains/phenotypes. After a 2-week oral administration at the same dosages, there were dosage-related increases in hepatocellular peroxisomal yield and in the hepatic enzymes' cyanide-insensitive acyl-CoA oxidase and catalase. The peroxisomal yield was less increased in Zucker than in Sprague-Dawley rats, while the enzyme activities were similarly increased. Although the absolute specific activity of microsomal ω-lauryl hydroxylase (cytochrome P4504A1) was lower in Zucker rats, it was increased more in this strain than in Sprague-Dawley rats in response to drug exposure. The hypolipidemic effect (cholesterol and triglyceride reduction) was more pronounced in Zucker obese rats. Based on biochemical and morphological results, no major differences between strains/phenotypes in terms of peroxisome proliferation were observed following a 2-week administration of ciprofibrate.  相似文献   

10.
The metabolic differences in vitro between genetic and dietary obese rats in the uptake of ammonium and amino acids by the liver and their use for ureogenesis have been assayed using hepatocytes isolated from Lean, Obese Zucker (Genetic obese) rats and Dietary obese rats. The hepatocytes of genetic obese animals took up more ammonium and produced higher amounts of urea from ammonium and alanine than those of lean and dietary obese groups (2 and 5 times more respectively). In the lean and dietary obese groups urea synthesis accounted for almost all the nitrogen taken up as ammonium. Thus, dietary and genetic obesity show a widely different handling of nitrogen, and the genetic obese rats need to break down protein to maintain their hepatocyte function.  相似文献   

11.
The effects of hydrogen peroxide on cell viability and, in particular, on lysosomal integrity were investigated in a model system of cultured, established, macrophage-like J-774 cells. The cells were found to rapidly degrade added hydrogen peroxide, withstanding concentrations 250μM without cell death; however, all tested concentrations (100-500/μM) substantially decreased cellular ATP to approximately the same degree. Concentrations of hydrogen peroxide 500/μM resulted in a pronounced and rapid decrease in cell viability preceded by the loss of lysosomal integrity, as judged by the relocalization of acridine orange, a lysosomotropic weak base, in pre-labelled cells. Hydrogen peroxide-induced relocalization of acridine orange and cell death were either enhanced or much prevented, according to if the cells were initially allowed to endocytose ferric iron or the specific iron-chelator deferoxamine, respectively. Depletion of ATP, however, was not associated with the loss of lysosomal integrity and viability regardless of iron or deferoxamine pretreatment. Pre-exposure to E-64, an inhibitor of lysosomal thiol proteases, resulted in the reduction of both lysosomal membrane damage and cell death. The results are interpreted as indicating (i) generation of hydroxyl radicals within the secondary lysosomal compartment due to the occurrence of reactive ferrous iron, leading to (ii) peroxidative alterations of the lysosomal membrane resulting in (iii) loss of lysosomal membrane integrity with dissipation of the proton gradient and leakage of lysosomal contents, including hydrolytic enzymes, into the cell sap. The partial protection by E-64 may result from hydroxyl radical scavening by accumulated non-degraded autophagocytosed lysosomal material, and/or decreased availability of reactive redox-cycling iron due to decreased enzymatic digestion of autophagocytosed iron-containing metalloproteins. Moreover, our results show that the normal lysosomal content of iron, capable of redox cycling, of the cell line under study is enough to induce oxidative damage leading to loss of lysosomal integrity. It is suggested that lysosomal damage may be an important cause of cell degeneration under conditions of increased intra- or extracellular hydrogen peroxide-formation.  相似文献   

12.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

13.
14.
The utilization of L-alanine by liver is dependent on amino acid uptake from blood. This uptake, mainly mediated by the A transport system, may be regulated by different nutritional and physiologic conditions. The regulation of this transport system by diets with different protein content was tested in lean and obese Zucker rats. High-protein (HP) and low-protein (LP) diets led to changes in the rats’ growth patterns, especially in lean animals. However, homeostasis was relatively well maintained, as seen in plasma values, in spite of the increased urea production in the HP groups and increased triacylglycerides in the LP groups. The obese animals took up L-alanine at a higher rate than the lean animals. Obesity led to the emergence of a high-affinity component (KM approximately 0.1–0.2 mM) in the transport system, which was not dependent on the protein content of the diet. This component has a 10-fold increase in affinity for L-alanine, but with an approximately 3- to 5-fold reduction in maximal velocity of transport.  相似文献   

15.
Oxygen free radicals (ROS) of mitochondrial origin seem to be involved in aging. Whereas in other tissues complexes I or III of the respiratory chain contain the ROS generators, in this study we find that rat liver mitochondria generate oxygen radicals at complexes I, II, and III. Short-term (6 weeks) caloric restriction significantly decreased H2O2 production in rat liver mitochondria. This decrease in ROS production was located at complex I because it occurred with complex I-linked substrates (pyruvate/malate), but did not reach statistical significance with the complex II-linked substrate succinate. The mechanism responsible for the lowered ROS production was not a decrease in oxygen consumption. Instead, the mitochondria of caloric-restricted animals released less ROS per unit electron flow. This was due to a decrease in the degree of reduction of the complex I generator. Furthermore, oxidative damage to mitochondrial and nuclear DNA was also decreased in the liver by short-term caloric restriction. The results agree with the idea that caloric restriction delays aging, at least in part, by decreasing the rate of mitochondrial ROS generation and thus the rate of attack to molecules, like DNA, highly relevant for the accumulation of age-dependent changes.  相似文献   

16.
The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β‐alanyl‐L‐histidine, L‐CAR) and of its enantiomer (β‐alanyl‐D‐histidine, D‐CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products formation and development of nephropathy in the non‐diabetic, Zucker obese rat. The Zucker rats received a daily dose of L‐CAR or D‐CAR (30 mg/kg in drinking water) for 24 weeks. Systolic blood pressure was recorded monthly. At the end of the treatment, plasma levels of triglycerides, total cholesterol, glucose, insulin, creatinine and urinary levels of total protein, albumin and creatinine were measured. Several indices of oxidative/carbonyl stress were also measured in plasma, urine and renal tissue. We found that both L‐ and D‐CAR greatly reduced obese‐related diseases in obese Zucker rat, by significantly restraining the development of dyslipidaemia, hypertension and renal injury, as demonstrated by both urinary parameters and electron microscopy examinations of renal tissue. Because the protective effect elicited by L‐ and D‐CAR was almost superimposable, we conclude that the pharmacological action of L‐CAR is not due to a pro‐histaminic effect (D‐CAR is not a precursor of histidine, since it is stable to peptidic hydrolysis), and prompted us to propose that some of the biological effects can be mediated by a direct carbonyl quenching mechanism.  相似文献   

17.
One of the most precise methods of determining hydrogen peroxide (H2O2) formation by biological systems is based on measuring the rate of enzyme-substrate complex formation between H2O2 and cytochrome c peroxidase (CCP). The main problem with this method is that CCP is not commercially available and has to be prepared in the laboratory. We have modified some currently available methods for purifying a highly active preparation of CCP in about 4 d. It includes a batch extraction of protein using DEAE-sepharose followed by concentration either by lyophilization or by passing the extract through a small DEAE-sepharose column instead of by ultrafiltration. The concentrated preparation is passed through a Sephadex G-75 column and the final CCP crystallized against water. The final preparations had a purity index (PI, ratio of absorbance at 408 nm/280 nm, equivalent to heme/protein ratio) above 1.2. These changes make the overall procedure very simple, preserving enzyme activity and spectral properties. In addition, we point out that special care has to be taken to eliminate cytochrome c from crude CCP extracts. Cytochrome c not only introduces an artifact when determining PI, but is also may act as a hydrogen donor for CCP when monitoring H2O2 formation, thus decreasing the sensitivity of this method.  相似文献   

18.
Adequate methods to measure the rate of mitochondrial oxygen radical generation are needed since oxygen radicals are involved in many pathologies. A fluorometric method appropriate to measure the rate of generation of H2O2 in intact mitochondria is described. Just after isolation of functional mitochondria from fresh tissues, rates of generation of H2O2 are kinetically measured by fluorometry in the presence of homovanillic acid and horseradish peroxidase. The method is specific for H2O2 and is sensitive enough to assay mitochondrial H2O2 generation in the presence of respiratory substrate without inhibitors of the respiratory chain. Simultaneous measurement of mitochondrial oxygen consumption allows calculation of the free radical leak: the percentage of electrons out of sequence which reduce oxygen to oxygen radicals along the mitochondrial respiratory chain instead of reducing oxygen to water at the terminal cytochrome oxidase. The method shows instantaneous response to H2O2. This makes it appropriate to study the quick effects of different inhibitors and modulators on the rate of mitochondrial oxygen radical production. Its application to the localization of the sites where caloric restriction decreases mitochondrial oxygen radical generation in heart mitochondria is described.  相似文献   

19.
Sorts of abnormal state, obesity and inflammation are involved in a number of serious disease occurring and both of them became important research topics among molecular biologists. UCP-2 and TNF-α respectively reflecting obese and inflammatory status have often been used to evaluate the effects of independent variable, such as exercise, on them. Because exercise has shown its potent control on obesity and inflammation, it is necessary to determine if exercise is working via same bioindices. The purpose of this study was to determine the effects of different treadmill exercise intensities on UCP-2 of brown adipose tissue and TNF-α of soleus muscle during 8 weeks in Zucker rat. Zucker rats were divided into four groups (n = 7 in each group): control group, low intensity exercise group, moderate intensity exercise group and high intensity exercise group. Zucker rats of the exercise groups were made to run on a motorized treadmill for 30 minutes once a day during 8 weeks. Rats were sacrificed 24 hours after the last bout of exercise. Blood glucose in Zucker rats were measured by Gluco-Card Ⅱ. Brown adipose tissue were extracted to analyze the level of UCP-2 and TNF-α, respectively. UCP-2 and TNF-α were analyzed using the Western Blotting technique. Statistical techniques for data analysis were repeated measure ANOVA and one way ANOVA to determine the difference between groups, and for post hoc test was Duncan'' test. The 5% level of significance was utilized as the critical level for acceptance of hypotheses for the study. The following results were obtained from this study; UCP-2 protein expression of brown adipose tissue in Zucker rats were increased significantly following exercise of the low and moderate intensities compared to those of control group after 8 weeks. It was shown that TNF-α protein expression of soleus muscle in Zucker rats were decreased significantly following exercise of the low and moderate intensities compared to those of control group after 8 weeks. But no significant differences in levels of fasting glucose were shown between groups. The present data suggested that low and moderate intensities treadmill exercise may improve glycometabolism control and fat oxidation by up-regulating UCP-2 expression. In addition, we found low and moderate intensities reduce damages on skeletal muscle by down-regulation the TNF-α in Zucker rats. Thus, the low and moderate intensity exercise are appropriate for anti-obesity and inflammatory effects.  相似文献   

20.
Summary Primary fetal hepatocyte cultures derived from Zucker rats and with expectedfa-gene frequencies of 0.0 and 0.75 have been established and can be used to detect early effects of thefa gene on hepatocellular metabolism. Proliferative capacity is similar in both types of culture. Changes of the growth media significantly decrease total lipogenesis in both 0.0 and 0.75fa-gene culture grown in arginine-free DME medium. Paired incubation experiments demonstrate that total lipogenesis in 0.75fa gene cultures is significantly less than in 0.0fa-gene cultures under basal conditions. Stimulation of total lipogenesis by pharmacological doses of insulin and excess substrate (glucose) is significantly less in the 0.75fa gene than in the 0.0fa-gene cultures. These data suggest that the development of obesity in the Zucker rat cannot be attributed to elevated hepatic lipogenesis in the fetus. This work constitutes part of a Ph.D. dissertation submitted to New York University by A. L. Goldstein. A portion of this work was presented in preliminary form at the 1978 meeting of the Tissue Culture Association. Supported in part by National Institutes of Health Grant AM 19382 and a Grant from the Weight Watchers Foundation, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号