共查询到20条相似文献,搜索用时 4 毫秒
1.
Ras-GRF1/CDC25(Mm) has been implicated as a Ras-guanine nucleotide exchange factor (GEF) expressed in brain. Ras-GEF activity of Ras-GRF1 is augmented in response to Ca(2+) influx and G protein betagamma subunit (Gbetagamma) stimulation. Ras-GRF1 also acts as a GEF toward Rac, but not Rho and Cdc42, when activated by Gbetagamma-mediated signals. Tyrosine phosphorylation of Ras-GRF1 is critical for the induction of Rac-GEF activity as evidenced by inhibition by tyrosine kinase inhibitors. Herein, we show that the nonreceptor tyrosine kinase Src phosphorylates Ras-GRF1, thereby inducing Rac-GEF activity. Ras-GRF1 transiently expressed with v-Src was tyrosine-phosphorylated and showed significant GEF activity toward Rac, but not Rho and Cdc42, which was comparable with that induced by Gbetagamma. In contrast, Ras-GEF activity remained unchanged. The recombinant c-Src protein phosphorylated affinity-purified glutathione S-transferase-tagged Ras-GRF1 in vitro and thereby elicited Rac-GEF activity. Taken together, tyrosine phosphorylation by Src is sufficient for the induction of Rac-GEF activity of Ras-GRF1, which may imply the involvement of Src downstream of Gbetagamma to regulate Ras-GRF1. 相似文献
2.
Baouz S Jacquet E Accorsi K Hountondji C Balestrini M Zippel R Sturani E Parmeggiani A 《The Journal of biological chemistry》2001,276(3):1742-1749
Activation of the neuronal Ras GDP/GTP exchange factor (GEF) CDC25Mm/GRF1 is known to be associated with phosphorylation of serine/threonine. To increase our knowledge of the mechanism involved, we have analyzed the ability of several serine/threonine kinases to phosphorylate CDC25Mm in vivo and in vitro. We could demonstrate the involvement of cAMP-dependent protein kinase (PKA) in the phosphorylation of CDC25Mm in fibroblasts overexpressing this RasGEF as well as in mouse brain synaptosomal membranes. In vitro, PKA was found to phosphorylate multiple sites on purified CDC25Mm, in contrast to protein kinase C, calmodulin kinase II, and casein kinase II, which were virtually inactive. Eight phosphorylated serines and one threonine were identified by mass spectrometry and Edman degradation. Most of them were clustered around the Ras exchanger motif/PEST motifs situated in the C-terminal moiety (residues 631-978) preceding the catalytic domain. Ser745 and Ser822 were the most heavily phosphorylated residues and the only ones coinciding with PKA consensus sequences. Substitutions S745D and S822D showed that the latter mutation strongly inhibited the exchange activity of CDC25Mm on Ha-Ras. The multiple PKA-dependent phosphorylation sites on CDC25Mm suggest a complex regulatory picture of this RasGEF. The results are discussed in the light of structural and/or functional similarities with other members of this RasGEF family. 相似文献
3.
Ras-GEF Cdc25p has been found to be hyperphosphorylated upon glucose addition. This work provides evidence indicating that PKA activity positively regulates the degree of Cdc25p phosphorylation, and that the intracellular association of Cdc25p and Ras2p is independent of PKA activity. In vitro experiments revealed that the Ras2-GEF activity of Cdc25p is inhibited by Cdc25p phosphorylation. These data suggest a negative feedback mechanism by which intracellular cAMP synthesis is inhibited by PKA through Cdc25p phosphorylation.
Structured summary
MINT-8053016: CDC25p (uniprotkb:P04821) physically interacts (MI:0915) with ras2p (uniprotkb:P01120) by anti tag co-immunoprecipitation (MI:0007)MINT-8053030: ras2p (uniprotkb:P01120) physically interacts (MI:0915) with CDC25p (uniprotkb:P04821) by anti bait co-immunoprecipitation (MI:0006) 相似文献4.
5.
Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation. When transiently coexpressed with the activated form of the non-receptor tyrosine kinase ACK1, a downstream target of Cdc42, Dbl became tyrosine-phosphorylated. In vitro GEF activity of Dbl toward Rho and Cdc42 was augmented following tyrosine phosphorylation. Moreover, accumulation of the GTP-bound form of Rho and Rac within the cell paralleled ACK-1-dependent tyrosine phosphorylation of Dbl. Consistently, activation of c-Jun N-terminal kinase downstream of Rho family GTP-binding proteins was also enhanced when Dbl was tyrosine-phosphorylated. Collectively, these findings suggest that the tyrosine kinase ACK1 may act as a regulator of Dbl, which in turn activates Rho family proteins. 相似文献
6.
The Ras-GRF exchange factor can activate Ras-dependent responses following the activation of heterotrimeric G-protein and calcium signalling. In stable lines of NIH-3T3 fibroblasts that express Ras-GRF, the agonist lysophosphatidic acid (LPA) increases the phosphorylation state and activity of Ras-GRF. The stimulation of Ras-GRF can be demonstrated in vitro, in an assay using recombinant Ras substrate, and in situ, by a selective increase in the ability of LPA to stimulate mitogen-activated protein (MAP) kinase. The increase in Ras-GRF phosphorylation state, which occurs on serine residues, and the increase in exchange factor activity are blocked by pretreatment with pertussis toxin. Activation of Ras-GRF by LPA can also be inhibited by chelation of intracellular calcium and treatment of the Ras-GRF with protein phosphatase 1 (PP1), supporting a model in which Ras-GRF serves to integrate signals from multiple transduction pathways. 相似文献
7.
Gnesutta N Ceriani M Innocenti M Mauri I Zippel R Sturani E Borgonovo B Berruti G Martegani E 《The Journal of biological chemistry》2001,276(42):39448-39454
We used yeast "two-hybrid" screening to isolate cDNA-encoding proteins interacting with the N-terminal domain of the Ras nucleotide exchange factor CDC25(Mm). Three independent overlapping clones were isolated from a mouse embryo cDNA library. The full-length cDNA was cloned by RACE-polymerase chain reaction. It encodes a large protein (1080 amino acids) highly homologous to the human deubiquitinating enzyme hUBPy and contains a well conserved domain typical of ubiquitin isopeptidases. Therefore we called this new protein mouse UBPy (mUBPy). Northern blot analysis revealed a 4-kilobase mRNA present in several mouse tissues and highly expressed in testis; a good level of expression was also found in brain, where CDC25(Mm) is exclusively expressed. Using a glutathione S-transferase fusion protein, we demonstrated an "in vitro" interaction between mUBPy and the N-terminal half (amino acids 1-625) of CDC25(Mm). In addition "in vivo" interaction was demonstrated after cotransfection in mammalian cells. We also showed that CDC25(Mm), expressed in HEK293 cells, is ubiquitinated and that the coexpression of mUBPy decreases its ubiquitination. In addition the half-life of CDC25Mm protein was considerably increased in the presence of mUBPy. The specific function of the human homolog hUBPy is not defined, although its expression was correlated with cell proliferation. Our results suggest that mUBPy may play a role in controlling degradation of CDC25(Mm), thus regulating the level of this Ras-guanine nucleotide exchange factor. 相似文献
8.
ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10-Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1. 相似文献
9.
Sacco E Fantinato S Manzoni R Metalli D De Gioia L Fantucci P Alberghina L Vanoni M 《FEBS letters》2005,579(30):6851-6858
Cdc25Mm is a mammalian Ras-specific guanine nucleotide exchange factor (GEF). By homology modeling we show that it shares with Sos-GEF the structure of the putative catalytic HI hairpin where the dominant negative T1184E mutation is located. Similarly to Cdc25MmT1184E, the isolated wild-type and mutant hairpins retain the ability to displace Ras-bound nucleotide, originate a stable Ras/GEF complex and downregulate the Ras pathway in vivo. These results indicate that nucleotide re-entry and Ras/GEF dissociation--final steps in the GEF catalytic cycle--require GEF regions different from the HI hairpin. GEF down-sizing could lead to development of novel Ras inhibitors. 相似文献
10.
Arozarena I Aaronson DS Matallanas D Sanz V Ajenjo N Tenbaum SP Teramoto H Ighishi T Zabala JC Gutkind JS Crespo P 《The Journal of biological chemistry》2000,275(34):26441-26448
The Ras guanine-nucleotide exchange factor Ras-GRF/Cdc25(Mn) harbors a complex array of structural motifs that include a Dbl-homology (DH) domain, usually found in proteins that interact functionally with the Rho family GTPases, and the role of which is not yet fully understood. Here, we present evidence that Ras-GRF requires its DH domain to translocate to the membrane, to stimulate exchange on Ras, and to activate mitogen-activated protein kinase (MAPK). In an unprecedented fashion, we have found that these processes are regulated by the Rho family GTPase Cdc42. We show that GDP- but not GTP-bound Cdc42 prevents Ras-GRF recruitment to the membrane and activation of Ras/MAPK, although no direct association of Ras-GRF with Cdc42 was detected. We also demonstrate that catalyzing GDP/GTP exchange on Cdc42 facilitates Ras-GRF-induced MAPK activation. Moreover, we show that the potentiating effect of ionomycin on Ras-GRF-mediated MAPK stimulation is also regulated by Cdc42. These results provide the first evidence for the involvement of a Rho family G protein in the control of the activity of a Ras exchange factor. 相似文献
11.
Vanoni M Bertini R Sacco E Fontanella L Rieppi M Colombo S Martegani E Carrera V Moroni A Bizzarri C Sabbatini V Cattozzo M Colagrande A Alberghina L 《The Journal of biological chemistry》1999,274(51):36656-36662
Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation depends on the competing action of GTPase activating proteins and guanine nucleotide exchange factors (GEF). The properties of two dominant-negative mutants within the catalytic domains of the ras-specific GEF, CDC25(Mm), are described. In vitro, the mutant GEF(W1056E) and GEF(T1184E) proteins are catalytically inactive, are able to efficiently displace wild-type GEF from p21(ras), and strongly reduce affinity of the nucleotide-free ras x GEF complex for the incoming nucleotide, thus resulting in the formation of a stable ras.GEF binary complex. Consistent with their in vitro properties, the two mutant GEFs bring about a dramatic reduction in ras-dependent fos-luciferase activity in mouse fibroblasts. The stable ectopic expression of the GEF(W1056E) mutant in smooth muscle cells effectively reduced growth rate and DNA synthesis with no detectable morphological changes. 相似文献
12.
The function of the Ras guanine nucleotide exchange factor Ras-GRF/cdc25(Mn) is subject to tight regulatory processes. We have recently shown that the activation of the Ras/MAPK pathway by Ras-GRF is controlled by the Rho family GTPase Cdc42 through still unknown mechanisms. Here, we report that retaining Cdc42 in its GDP-bound state by overexpressing Rho-GDI inhibits Ras-GRF-mediated MAPK activation. Conversely, Ras-GRF basal and LPA- or ionomycin-stimulated activities were unaffected by a constitutively active GTP-bound Cdc42. Moreover, the Cdc42 downstream effectors MLK3, ACK1, PAK1, and WASP had no detectable influence on Ras-GRF-mediated MAPK activation. In contrast, promoting GDP release from Cdc42 with the Rho family GEF Dbl or with ionomycin suppressed the restraint exerted by Cdc42 on Ras-GRF activity. We conclude that Cdc42-GDP inhibits Ras-GRF-induced MAPK activation, but neither Cdc42-GTP nor the Cdc42 downstream effectors affect Ras-GRF performance. Interestingly, the loss of the GDP-bound state by Cdc42 abolishes its inhibitory effects on Ras-GRF function. These results suggest that the Cdc42 mechanism of action may not be solely restricted to activation of downstream signaling cascades when GTP-loaded. Furthermore, the GDP-bound form may be acting as an inhibitory molecule down-modulating parallel signaling routes such as the Ras/MAPK pathway. 相似文献
13.
Xiao SH Farrelly E Anzola J Crawford D Jiao X Liu J Ayres M Li S Huang L Sharma R Kayser F Wesche H Young SW 《Analytical biochemistry》2007,367(2):179-189
Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available. 相似文献
14.
ACK1 is a multidomain non-receptor tyrosine kinase that is an effector of the Cdc42 GTPase. Members of the ACK family have a unique domain ordering and are the only tyrosine kinases known to interact with Cdc42. In contrast with many protein kinases, ACK1 has only a modest increase in activity upon phosphorylation. We have solved the crystal structures of the human ACK1 kinase domain in both the unphosphorylated and phosphorylated states. Comparison of these structures reveals that ACK1 adopts an activated conformation independent of phosphorylation. Furthermore, the unphosphorylated activation loop is structured, and its conformation resembles that seen in activated tyrosine kinases. In addition to the apo structure, complexes are also presented with a non-hydrolyzable nucleotide analog (adenosine 5'-(beta,gamma-methylenetriphosphate)) and with the natural product debromohymenialdisine, a general inhibitor of many protein kinases. Analysis of these structures reveals a typical kinase fold, a pre-organization into the activated conformation, and an unusual substrate-binding cleft. 相似文献
15.
Amino acid residues in the CDC25 guanine nucleotide exchange factor critical for interaction with Ras. 总被引:5,自引:3,他引:2 下载免费PDF全文
Previously we found that negatively charged residues at positions 62, 63, and 69 of H-Ras are involved in binding to the CDC25 guanine nucleotide exchange factor (GEF). Using site-directed mutagenesis, we have changed conserved, positively charged residues of CDC25GEF to glutamic acid. We find the nonfunctional CDC25R1374E mutant and the nonfunctional H-RasE63K mutant cooperate in suppression of the loss of CDC25 function in Saccharomyces cerevisiae. Also, peptides corresponding to residues 1364 to 1383 of CDC25GEF inhibit interaction between GEFs and H-Ras. We propose that residues 1374 of CDC25GEF and 63 of H-Ras form an ion pair and that when this ion pair is reversed, functional interaction can still occur. 相似文献
16.
ACK1 is a nonreceptor tyrosine kinase that associates specifically with Cdc42. Relatively few ACK1 substrates and interacting proteins have been identified. In this study, we demonstrated that ACK1 phosphorylates the Wiskott-Aldrich syndrome protein (WASP), a Cdc42 effector that plays an important role in the formation of new actin filaments. ACK1 and WASP interact in intact cells, and overexpression of ACK1 promotes WASP phosphorylation. Phosphorylation of WASP in vitro was enhanced by the addition of Cdc42 or phosphatidylinositol 4,5-biphosphate, presumably due to release of the autoinhibitory interactions in WASP. Surprisingly, when we mapped the sites of WASP phosphorylation, we found that ACK1 possesses significant serine kinase activity toward WASP (directed at Ser-242), as well as tyrosine kinase activity directed at Tyr-256. A serine peptide derived from the Ser-242 WASP phosphorylation site is also a substrate for ACK1. ACK1 expressed in bacteria retained its serine kinase activity, eliminating the possibility of contamination with a copurifying kinase. Serine phosphorylation of WASP enhanced the ability of WASP to stimulate actin polymerization in mammalian cell lysates. Thus, the tyrosine kinase ACK1 acts as a dual specificity kinase toward this substrate. In contrast to other dual specificity kinases that more closely resemble Ser/Thr kinases, ACK1 is a tyrosine kinase with an active site that can accommodate both types of hydroxyamino acids in substrates. 相似文献
17.
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras. 相似文献
18.
Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase 总被引:86,自引:0,他引:86
We have conducted a genetic screen for mutations that decrease the effectiveness of signaling by a protein tyrosine kinase, the product of the Drosophila melanogaster sevenless gene. These mutations define seven genes whose wild-type products may be required for signaling by sevenless. Four of the seven genes also appear to be essential for signaling by a second protein tyrosine kinase, the product of the Ellipse gene. The putative products of two of these seven genes have been identified. One encodes a ras protein. The other locus encodes a protein that is homologous to the S. cerevisiae CDC25 protein, an activator of guanine nucleotide exchange by ras proteins. These results suggest that the stimulation of ras protein activity is a key element in the signaling by sevenless and Ellipse and that this stimulation may be achieved by activating the exchange of GTP for bound GDP by the ras protein. 相似文献
19.
20.
Meller N Irani-Tehrani M Ratnikov BI Paschal BM Schwartz MA 《The Journal of biological chemistry》2004,279(36):37470-37476
Rho family small GTPases are critical regulators of multiple cellular processes and activities. Dbl homology domain-containing proteins are the classical guanine nucleotide exchange factors (GEFs) responsible for activation of Rho proteins. Recently another group of mammalian Rho-GEFs was discovered that includes CDM (Ced-5, DOCK180, Myoblast city) proteins that activate Rac and zizimin1 that activates Cdc42 via a nonconventional GEF module that we named the CZH2 domain. We report here that zizimin1 dimerizes via the CZH2 domain and that dimers are the only form detected. Dimerization was mapped to a approximately 200-amino acid region that overlaps but is distinct from the Cdc42-binding sequences. Rotary shadowing electron microscopy revealed zizimin1 to be a symmetric, V-shaped molecule. Experiments with DOCK180 and homology analysis suggest that dimerization may be a general feature of CZH proteins. Deletion and mutation analysis indicated existence of individual Cdc42-binding sites in the zizimin1 monomers. Kinetic measurements demonstrated increased binding affinity of Cdc42 to zizimin1 at higher Cdc42 concentration, suggesting positive cooperativity. These features are likely to be critical for Cdc42 activation. 相似文献