首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Responses of the general cortex to moving stimuli were studied in turtles. The evoked potential, the synaptic nature of its individual components, and the mechanisms of their generation were analyzed. The evoked potential had a negative-positive sequence. The negative part consisted of a slow negative wave on which fast negative complexes were superposed. These components reflected EPSPs of afferent nature generated on dendrites of the principal neurons. The first fast negative complex was followed by a rhythmic discharge superposed on the slow negative and positve waves. The negative waves of the rhythmic discharge were shown to reflect EPSPs and the positive waves IPSPs, probably generated on dendrites of cortical neurons. The rhythmic EPSP — IPSPs are evidently generated by a feedback mechanism, whereas the positive wave reflects dendritic IPSPs of the principal neurons.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 249–256, May–June, 1977.  相似文献   

2.
The nature of the principal components of the evoked potential of the general cortex of the turtle forebrain was studied in response to electrical stimulation of the contralateral optic nerve. Comparison of these components with postsynaptic potentials of the neurons of this structure showed that the four fast negative waves of the evoked potential correspond to fast EPSPs, which are independent of one another. The positive wave of the evoked potential is the sum of several IPSPs. The slow negative and, to some extent, the positive wave are a reflection of the slow EPSP. It is shown that early EPSPs are generated on portions of the apical dendrites which are further from the soma than those generating late fast EPSPs and also the IPSP and slow EPSP. Axo-somatic contacts are perhaps also concerned in the generation of the last-named potential.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No.3, pp.261–271, May–June, 1973.  相似文献   

3.
4.
Postsynaptic responses of neurons of the primordial hippocampus to electrical stimulation of brain structures belonging to the visual and olfactory afferent systems were investigated in frogs (Rana temporaria) immobilized with diplacin. * Short-latency (early) and long-latency (late) IPSPs evoked by both olfactory and visual afferent inputs, most probably activated by different conducting systems, are described. Impulses of different modalities can induce both similar and different IPSPs in a neuron. The conducting systems may have a common interneuron for the visual input and specific interneurons for the olfactory input. IPSPs evoked by visual impulses were similar in location to the early IPSP of the olfactory afferent input. Convergence of the systems of early and late inhibition on one neuron was frequently observed for the olfactory afferent input.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 583–592, November–December, 1973.  相似文献   

5.
The electrical reactions of 294 neurons of the auditory cortex to a click were recorded in experiments on cats immobilized with tubocurarine (174 intra- and 120 extracellularly). The value of the membrane potential varied from 30 to 70 mV with intracellular leads. The following types of reactions were obtained (the number of neurons is given in parentheses): a peak without slow oscillations in the membrane potential (4), EPSP (3), EPSP-peak (6), EPSP-peak-IPSP (17), EPSP-IPSP (9), primary IPSP (114, including 23 with an after-discharge). Twenty one neurons did not react to a click. The amplitude of the sub-threshold EPSP was 1–1.5 mV, the duration of the ascending part was about 10 and of the descending part 20–30 msec. The peak potential on the ascending part of the EPSP developed at the critical level of 3–4 mV. The amplitude of the peaks varied from several millivolts to 50–60. In 17 neurons prolonged hyperpolarization having all the properties of an IPSP, developed after the peak. The amplitude of these IPSP varied in different neurons from 1 to 10 mV and the duration varied from 20 to 80 msec. IPSP without preceding excitation of the given neuron were the predominant types of reaction. The latent period of these primary IPSP varied from 7 to 20 msec and the amplitude from 1 to 15 msec with a duration of 30–200, more frequently 80–100 msec. It is suggested that two types of inhibition develop in neurons of the auditory cortex in response to a click: recurrent and afferent. The functional significance of the first consists in limiting the duration of the discharge in the reacting neurons, the second prevents the development of excitation in adjacent neurons, thereby limiting the area of neuronal activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 339–349, July–August, 1971.  相似文献   

6.
7.
8.
9.
Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex.  相似文献   

10.
《Journal of Physiology》1996,90(3-4):151-156
In this paper we describe some of the results obtained from recent experiments on mechanisms underlying long-term potentiation (LTP) and long-term depression (LTD) in the visual cortex of young rats. In particular, we focus on experiments which tested the hypotheses that the induction of LTP in the visual cortex is of Hebbian type and that an input-associated Ca2+ rise at postsynaptic sites and subsequent activation of protein kinases or protein phosphatases may play roles in the induction of LTP or LTD in the developing visual cortex.  相似文献   

11.
This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 m/ms to 70 m/ms and occasionally reflect from the caudolateral border of the cortex.  相似文献   

12.
Electron microscopic study of the neuronal composition of Emys orbicularis cortical zones as compared with the light microscopy data has revealed that the distinctions in the cell cytoplasm ultrastructure with respect to the dendrite branching pattern and the peculiarities of their localization in the cortical plate are suggestive of a possible metabolic heterogeneity and can serve as a foundation of the morpho-functional characteristics of the neurons. A few neuronal types of neurons have been revealed: 1. light neurons distinguished by the cytoplasm matrix devoid of any electron density, a poorly developed endoplasmic reticulum and a few cytoplasmatic organells and inclusions; 2. light neurons having slight osmophility of the cytoplasm matrix, a more developed endoplasmic reticulum with elongated cisternae, a great number of organells including neurofilaments; 3. dark neurons having a high degree of cytoplasm matrix and the nucleus, a large number of the nuclei, cytoplasm, dendrites and axons in contrast to the above described patterns.  相似文献   

13.
An electron microscopical investigation of synaptic organization of the superficial plexiform layer of three forebrain cortical zones (hippocampal, dorsal and piriform) in two aquatic and two land Chelonia species has been performed. As demonstrate the data obtained and those from the literature, the main elements of the axo-spinal complexes (spines--synapses--neural terminals) possess both stability properties, contributing to structural firmness of the contacts and their reliability during activities, and plastisity ensuring the maintenance of dynamic equilibrium and a possibility for adequate rearrangements. Under normal conditions, the functional shifts in ultrastructure of the synaptic apparatuses are, possibly, so negligible that they cannot mask certain specific fractures of the synaptic organization of the neural centers. When comparing structures of the axo-spinal complexes in functionally dissimilar cortical zones, more constant, common for all species of Chelonia studied signs are definitely revealed. They characterize a certain level of the neural processes integration. There are signs more variable, evidently, ensuring adaptive rearrangements within limits of the given level of the interneuronal connections organization which can be considered as ecological and species-specific peculiarities.  相似文献   

14.
In experiments on immobilized, lightly anesthetized turtles the presence of visual and somatic representation was established in the subcortical striatal division of the forebrain — the pallial thickening, the dorsal ventricular ridge, and the putamen. In their physiological characteristics they are similar to the corresponding representation in the general cortex. The absence of significant differences between the latent periods of cortical and striatal evoked potentials to flashes and to stimulation of the dorsal thalamus indicates that visual projection fibers (from the lateral geniculate body) terminate at both cortical and striatal levels. Differences in the distribution of latent periods of unit responses in the cortex to visual and thalamic stimulation are due to the presence of a rotundo-telencephalic visual channel, with direct connections with the striatal and polysynaptic connections with the general cortex, as well as the geniculo-telencephalic tract. Considerable differences between the latent periods of the evoked potentials and also between unit responses to electrodermal stimulation in the cortical and striatal structures indicate that somatic projection fibers relay in the striatum on their path to the general cortex. Consequently, the somatosensory system of turtles is less corticalized than the visual system. Comparison of the results described with those obtained by workers studying other vertebrates suggests that the afferent supply of the striatum may be reorganized in the transition from premammals to mammals.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 184–193, March–April, 1973.  相似文献   

15.
16.
Neuronal membrane potential (Em) regulates the activity of excitatory voltage-sensitive channels. Anoxic insults lead to a severe loss of Em and excitotoxic cell death (ECD) in mammalian neurons. Conversely, anoxia-tolerant freshwater turtle neurons depress energy usage during anoxia by altering ionic conductance to reduce neuronal excitability and ECD is avoided. This wholesale alteration of ion channel and pump activity likely has a significant effect on Em. Using the whole-cell patch clamp technique we recorded changes in Em from turtle cortical neurons during a normoxic to anoxic transition in the presence of various ion channel/pump modulators. Em did not change with normoxic perfusion but underwent a reversible, mild depolarization of 8.1 ± 0.2 mV following anoxic perfusion. This mild anoxic depolarization (MAD) was not prevented by the manipulation of any single ionic conductance, but was partially reduced by pre-treatment with antagonists of GABAA receptors (5.7 ± 0.5 mV), cellular bicarbonate production (5.3 ± 0.2 mV) or K+ channels (6.0 ± 0.2 mV), or by perfusion of reactive oxygen species scavengers (5.2 ± 0.3 mV). Furthermore, all of these treatments induced depolarization in normoxic neurons. Together these data suggest that the MAD may be due to the summation of numerous altered ion conductance states during anoxia.  相似文献   

17.
18.
Experiments were carried out on cats under pentobarbital anaesthesia. Two stimulating electrodes (S1 and S2), a recording macroelectrode and K+-selective microelectrode were placed on g. suprasylvius. A strong stimulus applied through S1 elicited slow negativity (SN) and increase in [K+]o. At that time the dendritic potential (DP) evoked by stimulation through S2 was depressed. The depression of DP correlated with the voltage of SN and with the level of [K+]o. It is suggested that DP depression is caused by presynaptic action of K+ ions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号