首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wild type dihydrolipoyltransacetylase(E2p)-components from the pyruvate dehydrogenase complex of A. vinelandii or E. coli, and mutants of A. vinelandii E2p with stepwise deletions of the lipoyl domains or the alanine- and proline-rich region between the binding and the catalytic domain have been overexpressed in E. coli TG2. The high expression of A. vinelandii wild type E2p (20% of cellular protein) and of a mutant enzyme with two lipoyl domains changed the properties of the inner bacterial membrane. This resulted in a solubilization of A. vinelandii E2p after degradation of the outer membrane by lysozyme without any contamination by E. coli pyruvate dehydrogenase complex (PDC) or other high-molecular-weight contaminants. The same effect could be detected for A. vinelandii E2o, an E2 which contains only one lipoyl domain, whereas almost no solubilization of A. vinelandii E2p with one lipoyl domain or of E2p consisting only of the binding and catalytic domain was found. Partial or complete deletion of the alanine- and proline-rich sequence between the binding and the catalytic domain did also decrease the solubilization of the E2p-mutants after lysozyme treatment. Immunocytochemical experiments on E. coli TG2 cells expressing A. vinelandii wild type E2p indicated that the enzyme was present as a soluble protein in the cytoplasm. In contrast, overexpressed A. vinelandii E2p with deletion of all three lipoyl domains and E. coli wild type E2p aggregated intracellularly. The solubilization by lysozyme is therefore ascribed to excluded volume effects leading to changes in the properties of the inner bacterial membrane.  相似文献   

3.
Two unique restriction sites were introduced by site-directed mutagenesis at identical positions in the DNA encoding the dihydrolipoyltransacetylase (E2p) components of the pyruvate dehydrogenase complex from Azotobacter vinelandii and from Escherichia coli. In this manner each DNA chain could be cut into three parts, coding for the lipoyl domain, which consists of three lipoyl subdomains, the binding domain and the core-forming catalytic domain, respectively. Chimeric E2p components were constructed by exchanging the three domains between E2p from A. vinelandii and E. coli on gene level. The six chimeric E2p proteins were expressed and purified from E. coli TG2. All chimeras were catalytically active, 24-subunit E2p proteins. Interactions of the peripheral components E1p and E3 with the wild-type enzymes from A. vinelandii and E. coli and with the chimeric proteins were studied by gel-filtration experiments, analytical ultracentrifugation and reconstitution of the overall activity of the complex. A. vinelandii E3 interacts only with those chimeras that contain the A. vinelandii binding domain, whereas E. coli E3 interacts with all chimeras. Exchange of the lipoyl or catalytic domain did not influence the binding properties of E3. Recognition of E1p depends on the origin of both the binding domain and the catalytic domain. E. coli E1p interacts strongly with those chimeras in which both the binding domain and the catalytic domain were derived from E. coli E2p and weakly with chimeras that contained either the binding domain or the catalytic domain from E. coli E2p. No binding of E. coli E1p was observed when both domains were of A. vinelandii origin. A. vinelandii E1p recognizes E2p from A. vinelandii and E. coli, but strong interaction required that the binding and catalytic domain were of the same origin. Exchange of lipoyl domains had no effect on the binding properties of the E1p component. These observations confirm previous conclusions, based on site-directed mutagenesis of A. vinelandii E2p [Schulze, E., Westphal, A. H., Boumans, H., and de Kok, A. (1991) Eur. J. Biochem. 202, 841-848], that the binding site for E1p consists of amino acid residues derived from both the binding and the catalytic domain and extend these conclusions to E. coli E2p. Dissociation of the 24 subunit E2p core was only detected when the chimeric E2p proteins contained the catalytic domain from A. vinelandii E2p. Dissociation depends on the binding of peripheral components to the E1p-binding sites, pointing to differences in the inter-trimer contacts between the E2p proteins from both species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The gene encoding the dihydrolipoyltransacetylase component (E2) of the pyruvate dehydrogenase complex from Azotobacter vinelandii has been cloned in Escherichia coli. A plasmid containing a 2.8-kbp insert of A. vinelandii chromosomal DNA was obtained and its nucleotide sequence determined. The gene comprises 1911 base pairs, 637 codons excluding the initiation codon GUG and stop codon UGA. It is preceded by the gene encoding the pyruvate dehydrogenase component (E1) of pyruvate dehydrogenase complex and by an intercistronic region of 11 base pairs containing a good ribosome binding site. The gene is followed downstream by a strong terminating sequence. The relative molecular mass (64913), amino acid composition and N-terminal sequence are in good agreement with information obtained from studies on the purified enzyme. Approximately the first half of the gene codes for the lipoyl domain. Three very homologous sequences are present, which are translated in three almost identical units, alternated with non-homologous regions which are very rich in alanyl and prolyl residues. The N-terminus of the catalytic domain is sited at residue 381. Between the lipoyl domain and the catalytic domain, a region of about 50 residues is found containing many charged amino acid residues. This region is characterized as a hinge region and is involved in the binding of the pyruvate dehydrogenase and lipoamide dehydrogenase components. The homology with the dihydrolipoyltransacetylase from E. coli is high: 50% amino acid residues are identical.  相似文献   

5.
An Azotobacter vinelandii mannuronan C-5-epimerase gene was cloned in Escherichia coli. This enzyme catalyzes the Ca(2+)-dependent epimerization of D-mannuronic acid residues in alginate to the corresponding epimer L-guluronic acid. The epimerase gene was identified by screening a bacteriophage EMBL3 gene library of A. vinelandii DNA with a synthetic oligonucleotide probe. The sequence of this probe was deduced after determination of the N-terminal amino acid sequence of a previously reported extracellular mannuronan C-5-epimerase from A. vinelandii. A DNA fragment hybridizing against the probe was subcloned in a plasmid vector in E. coli, and the corresponding recombinant plasmid expressed intracellular mannuronan C-5-epimerase in this host. The nucleotide sequence of the gene encoding the epimerase was determined, and the sequence data showed that the molecular mass of the deduced protein is 103 kDa. A module consisting of about 150 amino acids was repeated tandemly four times in the C-terminal part of the deduced protein. Each of the four repeats contained four to six tandemly oriented nonameric repeats. The sequences in these motifs are similar to the Ca(2+)-binding domains of functionally unrelated secreted proteins reported previously in other bacteria. The reaction product of the recombinant epimerase was analyzed by nuclear magnetic resonance spectroscopy, and the results showed that the guluronic acid residues were distributed in blocks along the polysaccharide chain. Such a nonrandom distribution pattern, which is important for the commercial use of alginate, has previously also been identified in the reaction product of the corresponding enzyme isolated from A. vinelandii.  相似文献   

6.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

7.
8.
Lipoyl-lysine swinging arms are crucial to the reactions catalysed by the 2-oxo acid dehydrogenase multienzyme complexes. A gene encoding a putative lipoate protein ligase (LplA) of Thermoplasma acidophilum was cloned and expressed in Escherichia coli. The recombinant protein, a monomer of molecular mass 29 kDa, was catalytically inactive. Crystal structures in the absence and presence of bound lipoic acid were solved at 2.1 A resolution. The protein was found to fall into the alpha/beta class and to be structurally homologous to the catalytic domains of class II aminoacyl-tRNA synthases and biotin protein ligase, BirA. Lipoic acid in LplA was bound in the same position as biotin in BirA. The structure of the T.acidophilum LplA and limited proteolysis of E.coli LplA together highlighted some key features of the post-translational modification. A loop comprising residues 71-79 in the T.acidophilum ligase is proposed as interacting with the dithiolane ring of lipoic acid and discriminating against the entry of biotin. A second loop comprising residues 179-193 was disordered in the T.acidophilum structure; tryptic cleavage of the corresponding loop in the E.coli LplA under non-denaturing conditions rendered the enzyme catalytically inactive, emphasizing its importance. The putative LplA of T.acidophilum lacks a C-terminal domain found in its counterparts in E.coli (Gram-negative) or Streptococcus pneumoniae (Gram-positive). A gene encoding a protein that appears to have structural homology to the additional domain in the E.coli and S.pneumoniae enzymes was detected alongside the structural gene encoding the putative LplA in the T.acidophilum genome. It is likely that this protein is required to confer activity on the LplA as currently purified, one protein perhaps catalysing the formation of the obligatory lipoyl-AMP intermediate, and the other transferring the lipoyl group from it to the specific lysine residue in the target protein.  相似文献   

9.
W Ito  Y Kurosawa 《Gene》1992,118(1):87-91
For unknown reasons, levels of expression of foreign genes inserted into expression vectors in Escherichia coli have frequently been undetectable. The most critical step in the successful production of foreign proteins seems to be the initiation of translation. Since most prokaryotic genes are transcribed in a polycistronic form, we have devised a new prokaryotic expression system utilizing dicistronic gene organization. Downstream from a strong promoter and the gene encoding glutathione S-transferase from Schistosoma japonicum, various foreign genes were connected via a ribosome-binding site, a stop codon and a start codon. The VH domain of an immunoglobulin fused to the alpha subunit of tryptophan synthase, FK506-binding protein, cyclophilin, and a domain of a major histocompatibility complex antigen were successfully produced in E. coli as discrete polypeptides by this method.  相似文献   

10.
We have identified a new protease in Escherichia coli, which is required for its viability under normal growth conditions. This protease is anchored in the inner membrane and the gene encoding it has been named ecfE, since it is transcribed by Esigma(E) polymerase. Multicopy expression of the ecfE gene was found to turn down expression of both Esigma(E)- and Esigma(32)-transcribed promoters. Purified EcfE degrades both heat shock sigma factors RpoE and RpoH in vitro. EcfE has a zinc binding domain at the N-terminus, a PDZ-like domain in the middle and a highly conserved tripeptide, LDG, at the C-terminus. These features are characteristic of members of a new class of proteases whose activity occurs close to the inner membrane or within the inner membrane. Temperature-sensitive mutants of this gene were isolated mapping to the catalytic site and other domains that exhibited constitutively elevated levels of both heat shock regulons.  相似文献   

11.
12.
Limited proteolysis with trypsin has been used to study the domain structure of the dihydrolipoyltransacetylase (E2) component of the pyruvate dehydrogenase complex of Azotobacter vinelandii. Two stable end products were obtained and identified as the N-terminal lipoyl domain and the C-terminal catalytic domain. By performing proteolysis of E2, which was covalently attached via its lipoyl groups to an activated thiol-Sepharose matrix, a separation was obtained between the catalytic domain and the covalently attached lipoyl domain. The latter was removed from the column after reduction of the S-S bond and purified by ultrafiltration. The lipoyl domain is monomeric with a mass of 32.6 kDa. It is an elongated structure with f/fo = 1.62. Circulair dichroic studies indicates little secondary structure. The catalytic domain is polymeric with S20.w = 17 S and mass = 530 kDa. It is a compact structure with f/fo = 1.24 and shows 40% of the secondary structure of E2. The cubic structure of the native E2 is retained by this fragment as observed by electron microscopy. Ultracentrifugation in 6 M guanidine hydrochloride in the presence of 2 mM dithiothreitol yields a mass of 15.8 kDa. An N-terminal sequence of 36 amino acids is homologous with residues 370-406 of Escherichia coli E2. The catalytic domain possesses the catalytic site, but in contrast to the E. coli subunit binding domain the pyruvate dehydrogenase (E1) and lipoamide dehydrogenase (E3) binding sites are lost during proteolysis. From comparison with the E. coli E2 sequence a model is presented in which the several functions, such as lipoyl domain, the E3 binding site, the catalytic site, the E2/E2 interaction sites, and the E1 binding site, are indicated.  相似文献   

13.
The gene encoding the soluble pyridine nucleotide transhydrogenase (STH) of Azotobacter vinelandii was cloned and sequenced. This is the third sth gene identified and further defines a new subfamily within the flavoprotein disulfide oxidoreductases. The three STHs identified all lack one of the redox active cysteines that are characteristic for this large family of enzymes, and instead they contain a conserved threonine residue at this position. The recombinant A. vinelandii enzyme was purified to homogeneity and shown to form filamentous structures different from those of Pseudomonas fluorescens and Escherichia coli STH. Chimeric STHs were constructed which showed that the C-terminal region is important for polymer formation. The A. vinelandii STH containing the C-terminal region of P. fluorescens or E. coli STH showed structures resembling those of the STH contributing the C-terminal portion of the protein.  相似文献   

14.
A gene encoding the protein kinase domain of the epidermal growth factor receptor has been chemically synthesised, cloned and expressed in Escherichia coli. The 942-base-pair gene was constructed by enzymatic ligation of 56 oligonucleotides and cloned into an expression vector downstream of the E. coli trp promoter. Production of active gene product was confirmed by means of a protein kinase assay, demonstrating that the enzymatic activity of the protein kinase domain of the epidermal growth factor receptor is retained after expression in E. coli.  相似文献   

15.
从解淀粉芽孢杆菌Baillus amyloliquefaciens CICIM B2125中克隆了BamHI甲基转移酶基因(bamHIM),并在大肠杆菌JM109中得到了成功表达.该基因含有1 271 bp的开放阅读框(ORF),编码423个氨基酸,成熟蛋白分子量为49 kD.该基因在自身启动子引导下,表达了具有活性的BamHI甲基转移酶(M.BamHI).该酶可以将BamHI位点的碱基甲基化.氨基酸序列分析表明该酶存在有NADB_Rossmann结构域.  相似文献   

16.
The gene encoding lipoamide dehydrogenase from Azotobacter vinelandii has been cloned in Escherichia coli. Fragments of 9-23 kb from Azotobacter vinelandii chromosomal DNA obtained by partial digestion with Sau3A were ligated into the BamHI site of plasmid pUC9. E. coli TG2 cells were transformed with the resulting recombinant plasmids. Screening for clones which produced A. vinelandii lipoamide dehydrogenase was performed with antibodies raised against the purified enzyme. A positive colony was found which produced complete chains of lipoamide dehydrogenase as concluded form SDS gel electrophoresis of the cell-free extract, stained for protein or used for Western blotting. After subcloning of the 14.7-kb insert of this plasmid the structural gene could be located on a 3.2-kb DNA fragment. The nucleotide sequence of this subcloned fragment (3134 bp) has been determined. The protein-coding sequence of the gene consists of 1434 bp (478 codons, including the AUG start codon and the UAA stop codon). It is preceded by an intracistronic region of 85 bp and the structural gene for succinyltransferase. A putative ribosome-binding site and promoter sequence are given. The derived amino acid composition is in excellent agreement with that previously published for the isolated enzyme. The predicted relative molecular mass is 50223, including the FAD. The overall homology with the E. coli enzyme is high with 40% conserved amino acid residues. From a comparison with the three-dimensional structure of the related enzyme glutathione reductase [Rice, D. W., Schultz, G. E. & Guest, J. R. (1984) J. Mol. Biol. 174, 483-496], it appears that essential residues in all four domains have been conserved. The enzyme is strongly expressed, although expression does not depend on the vector-encoded lacZ promoter. The cloned enzyme is, in all the respects tested, identical with the native enzyme.  相似文献   

17.
The gene encoding dUTPase from Pyrococcus woesei was cloned into Escherichia coli expression system. It shows 100% gene identity to homologous gene in Pyrococcus furiosus. The expression of N-terminal His(6)-tagged Pwo dUTPase was performed in E. coli BL21(DE3)pLysS and E. coli Rosetta(DE3)pLysS strain that contains plasmid encoding additional copies of rare E. coli tRNAs. E. coli Rosetta(pLysS) strain was found with two times higher expression yield of His(6)-tagged Pwo dUTPase than E. coli BL21(DE3)pLysS. The His(6)-tagged Pwo dUTPase was purified on Ni(2+)-IDA-Sepharose, dialyzed, and the enzyme activity was investigated. We found that His(6)-tag domain has no influence on dUTP hydrolytic activity. dUTP is generated during PCR from dCTP, which inhibits the polymerization of DNA catalyzed by DNA polymerase with 3(')-5(') exonuclease activity. We observed that the thermostable His(6)-tagged Pwo dUTPase used for the polymerase chain reaction with P. woesei DNA polymerase improves the efficiency of PCR and it allows for amplification of longer targets.  相似文献   

18.
Enterococcus faecalis lipoamidase was discovered almost 50 years ago (Reed, L. J., Koike, M., Levitch, M. E., and Leach, F. R. (1958) J. Biol. Chem. 232, 143-158) as an enzyme activity that cleaved lipoic acid from small lipoylated molecules and from pyruvate dehydrogenase thereby inactivating the enzyme. Although the partially purified enzyme was a key reagent in proving the crucial role of protein-bound lipoic acid in the reaction mechanism of the 2-oxoacid dehydrogenases, the identity of the lipoamidase protein and the encoding gene remained unknown. We report isolation of the lipoamidase gene by screening an expression library made in an unusual cosmid vector in which the copy number of the vector is readily varied from 1-2 to 40-80 in an appropriate Escherichia coli host. Although designed for manipulation of large genome segments, the vector was also ideally suited to isolation of the gene encoding the extremely toxic lipoamidase. The gene encoding lipoamidase was isolated by screening for expression in E. coli and proved to encode an unexpectedly large protein (80 kDa) that contained the sequence signature of the Ser-Ser-Lys triad amidohydrolase family. The hexa-histidine-tagged protein was expressed in E. coli and purified to near-homogeneity. The purified enzyme was found to cleave both small molecule lipoylated and biotinylated substrates as well as lipoic acid from two 2-oxoacid dehydrogenases and an isolated lipoylated lipoyl domain derived from the pyruvate dehydrogenase E2 subunit. Lipoamidase-mediated inactivation of the 2-oxoacid dehydrogenases was observed both in vivo and in vitro. Mutagenesis studies showed that the residues of the Ser-Ser-Lys triad were required for activity on both small molecule and protein substrates and confirmed that lipoamidase is a member of the Ser-Ser-Lys triad amidohydrolase family.  相似文献   

19.
20.
The man26B gene of Clostridium thermocellum strain F1 was found in pKS305, which had been selected as a recombinant plasmid conferring endoglucanase activity on Escherichia coli. The open reading frame of man26B consists of 1,773 nucleotides encoding a protein of 591 amino acids with a predicted molecular weight of 67,047. Man26B is a modular enzyme composed of an N-terminal signal peptide and three domains in the following order: a mannan-binding domain, a family 26 mannanase domain, and a dockerin domain responsible for cellulosome assembly. We found that this gene was a homologue of the man26A gene of C. thermocellum strain YS but that there were insertion or deletion mutations that caused a frame-shift mutation affecting a stretch of 26 amino acids in the catalytic domain. Man26B devoid of the dockerin domain was constructed and purified from a recombinant E. coli, and its enzyme properties were examined. Immunological analysis indicated that Man26B was a catalytic component of the C. thermocellum F1 cellulosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号