共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies in cultured cells have implicated protein tyrosine phosphatase alpha (PTPalpha) as a potential regulator of insulin signaling. The physiological role of PTPalpha in insulin action was investigated using gene-targeted mice deficient in PTPalpha. PTPalpha-null animals had normal body weights and circulating levels of glucose and insulin in random fed and fasted states. In glucose and insulin tolerance tests, their efficiency of blood glucose clearance was comparable to wild-type mice. Kinetics and extents of insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation were similar in wild-type and PTPalpha(-/-) liver, muscle, and adipose tissue. However, the association of IRS-1 and PI 3-K was altered in PTPalpha(-/-) liver, with increased insulin-independent and reduced insulin-stimulated association compared to wild-type samples. This did not affect activation of the downstream signaling effector Akt. Our data indicate that PTPalpha is not a negative regulator of insulin signaling and does not perform an essential role in mediating the physiological action of insulin. 相似文献
2.
Dubois MJ Bergeron S Kim HJ Dombrowski L Perreault M Fournès B Faure R Olivier M Beauchemin N Shulman GI Siminovitch KA Kim JK Marette A 《Nature medicine》2006,12(5):549-556
The protein tyrosine phosphatase SHP-1 is a well-known inhibitor of activation-promoting signaling cascades in hematopoietic cells but its potential role in insulin target tissues is unknown. Here we show that Ptpn6(me-v/me-v) (also known as viable motheaten) mice bearing a functionally deficient SHP-1 protein are markedly glucose tolerant and insulin sensitive as compared to wild-type littermates, as a result of enhanced insulin receptor signaling to IRS-PI3K-Akt in liver and muscle. Downregulation of SHP-1 activity in liver of normal mice by adenoviral expression of a catalytically inert mutant of SHP-1, or after small hairpin RNA-mediated SHP-1 silencing, further confirmed this phenotype. Tyrosine phosphorylation of CEACAM1, a modulator of hepatic insulin clearance, and clearance of serum [125I]-insulin were markedly increased in SHP-1-deficient mice or SHP-1-deficient hepatic cells in vitro. These findings show a novel role for SHP-1 in the regulation of glucose homeostasis through modulation of insulin signaling in liver and muscle as well as hepatic insulin clearance. 相似文献
3.
Burcelin R Uldry M Foretz M Perrin C Dacosta A Nenniger-Tosato M Seydoux J Cotecchia S Thorens B 《The Journal of biological chemistry》2004,279(2):1108-1115
To assess the role of the alpha1b-adrenergic receptor (AR) in glucose homeostasis, we investigated glucose metabolism in knockout mice deficient of this receptor subtype (alpha1b-AR-/-). Mutant mice had normal blood glucose and insulin levels, but elevated leptin concentrations in the fed state. During the transition to fasting, glucose and insulin blood concentrations remained markedly elevated for at least 6 h and returned to control levels after 24 h whereas leptin levels remained high at all times. Hyperinsulinemia in the post-absorptive phase was normalized by atropine or methylatropine indicating an elevated parasympathetic activity on the pancreatic beta cells, which was associated with increased levels of hypothalamic NPY mRNA. Euglycemic clamps at both low and high insulin infusion rates revealed whole body insulin resistance with reduced muscle glycogen synthesis and impaired suppression of endogenous glucose production at the low insulin infusion rate. The liver glycogen stores were 2-fold higher in the fed state in the alpha1b-AR-/- compared with control mice, but were mobilized at the same rate during the fed to fast transition or following glucagon injections. Finally, high fat feeding for one month increased glucose intolerance and body weight in the alpha1b-AR-/-, but not in control mice. Altogether, our results indicate that in the absence of the alpha1b-AR the expression of hypotalamic NPY and the parasympathetic nervous activity are both increased resulting in hyperinsulinemia and insulin resistance as well as favoring obesity and glucose intolerance development during high fat feeding. 相似文献
4.
Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma 总被引:5,自引:0,他引:5 下载免费PDF全文
RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues. 相似文献
5.
Hwangseo Park Pham Ngoc Chien Seong Eon Ryu 《Bioorganic & medicinal chemistry letters》2012,22(20):6333-6337
Receptor protein tyrosine phosphatase sigma (PTPσ) has proved to be a promising target for the development of therapeutics for the treatment of neurological diseases. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule inhibitors of PTPσ. These inhibitors revealed high potencies with the associated IC50 values ranging from 0.1 to 1.3 μM and were also screened for having desirable physicochemical properties as a drug candidate. Therefore, they deserve consideration for further development by structure–activity relationship studies to develop therapeutics for neurological diseases. Structural features relevant to the stabilization of the newly identified inhibitors in the active site of PTPσ are discussed in detail. 相似文献
6.
No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta 总被引:1,自引:0,他引:1 下载免费PDF全文
Harroch S Palmeri M Rosenbluth J Custer A Okigaki M Shrager P Blum M Buxbaum JD Schlessinger J 《Molecular and cellular biology》2000,20(20):7706-7715
The development of neurons and glia is governed by a multitude of extracellular signals that control protein tyrosine phosphorylation, a process regulated by the action of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Receptor PTPbeta (RPTPbeta; also known as PTPzeta) is expressed predominantly in the nervous system and exhibits structural features common to cell adhesion proteins, suggesting that this phosphatase participates in cell-cell communication. It has been proposed that the three isoforms of RPTPbeta play a role in regulation of neuronal migration, neurite outgrowth, and gliogenesis. To investigate the biological functions of this PTP, we have generated mice deficient in RPTPbeta. RPTPbeta-deficient mice are viable, are fertile, and showed no gross anatomical alterations in the nervous system or other organs. In contrast to results of in vitro experiments, our study demonstrates that RPTPbeta is not essential for neurite outgrowth and node formation in mice. The ultrastructure of nerves of the central nervous system in RPTPbeta-deficient mice suggests a fragility of myelin. However, conduction velocity was not altered in RPTPbeta-deficient mice. The normal development of neurons and glia in RPTPbeta-deficient mice demonstrates that RPTPbeta function is not necessary for these processes in vivo or that loss of RPTPbeta can be compensated for by other PTPs expressed in the nervous system. 相似文献
7.
CC Barros A Haro FJ Russo I Schadock SS Almeida RA Ribeiro EC Vanzela VP Lanzoni FC Barros MR Moraes MA Mori RF Bacurau M Wurtele AC Boschero EM Carneiro M Bader JB Pesquero RC Araujo 《PloS one》2012,7(7):e40573
The Kallikrein-Kinin System (KKS) has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM), we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO). Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM. 相似文献
8.
Hypomyelination and increased activity of voltage-gated K(+) channels in mice lacking protein tyrosine phosphatase epsilon 下载免费PDF全文
Protein tyrosine phosphatase epsilon (PTP epsilon) is strongly expressed in the nervous system; however, little is known about its physiological role. We report that mice lacking PTP epsilon exhibit hypomyelination of sciatic nerve axons at an early post-natal age. This occurs together with increased activity of delayed- rectifier, voltage-gated potassium (Kv) channels and with hyperphosphorylation of Kv1.5 and Kv2.1 Kv channel alpha-subunits in sciatic nerve tissue and in primary Schwann cells. PTP epsilon markedly reduces Kv1.5 or Kv2.1 current amplitudes in XENOPUS: oocytes. Kv2.1 associates with a substrate-trapping mutant of PTP epsilon, and PTP epsilon profoundly reduces Src- or Fyn-stimulated Kv2.1 currents and tyrosine phosphorylation in transfected HEK 293 cells. In all, PTP epsilon antagonizes activation of Kv channels by tyrosine kinases in vivo, and affects Schwann cell function during a critical period of Schwann cell growth and myelination. 相似文献
9.
10.
Functions of the ectodomain and cytoplasmic tyrosine phosphatase domains of receptor protein tyrosine phosphatase Dlar in vivo 下载免费PDF全文
Krueger NX Reddy RS Johnson K Bateman J Kaufmann N Scalice D Van Vactor D Saito H 《Molecular and cellular biology》2003,23(19):6909-6921
The receptor protein tyrosine phosphatase (PTPase) Dlar has an ectodomain consisting of three immunoglobulin (Ig)-like domains and nine fibronectin type III (FnIII) repeats and a cytoplasmic domain consisting of two PTPase domains, membrane-proximal PTP-D1 and C-terminal PTP-D2. A series of mutant Dlar transgenes were introduced into the Drosophila genome via P-element transformation and were then assayed for their capacity to rescue phenotypes caused by homozygous loss-of-function genotypes. The Ig-like domains, but not the FnIII domains, are essential for survival. Conversely, the FnIII domains, but not the Ig-like domains, are required during oogenesis, suggesting that different domains of the Dlar ectodomain are involved in distinct functions during Drosophila development. All detectable PTPase activity maps to PTP-D1 in vitro. The catalytically inactive mutants of Dlar were able to rescue Dlar(-/-) lethality nearly as efficiently as wild-type Dlar transgenes, while this ability was impaired in the PTP-D2 deletion mutants DlarDeltaPTP-D2 and Dlar(bypass). Dlar-C1929S, in which PTP-D2 has been inactivated, increases the frequency of bypass phenotype observed in Dlar(-/-) genotypes, but only if PTP-D1 is catalytically active in the transgene. These results indicate multiple roles for PTP-D2, perhaps by acting as a docking domain for downstream elements and as a regulator of PTP-D1. 相似文献
11.
Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs. 相似文献
12.
Horn KE Xu B Gobert D Hamam BN Thompson KM Wu CL Bouchard JF Uetani N Racine RJ Tremblay ML Ruthazer ES Chapman CA Kennedy TE 《Journal of neurochemistry》2012,122(1):147-161
The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS. 相似文献
13.
Lee S Faux C Nixon J Alete D Chilton J Hawadle M Stoker AW 《Molecular and cellular biology》2007,27(5):1795-1808
Signaling through receptor protein tyrosine phosphatases (RPTPs) can influence diverse processes, including axon development, lymphocyte activation, and cell motility. The molecular regulation of these enzymes, however, is still poorly understood. In particular, it is not known if, or how, the dimerization state of RPTPs is related to the binding of extracellular ligands. Protein tyrosine phosphatase sigma (PTPsigma) is an RPTP with major isoforms that differ in their complements of fibronectin type III domains and in their ligand-binding specificities. In this study, we show that PTPsigma forms homodimers in the cell, interacting at least in part through the transmembrane region. Using this knowledge, we provide the first evidence that PTPsigma ectodomains must be presented as dimers in order to bind heterophilic ligands. We also provide evidence of how alternative use of fibronectin type III domain complements in two major isoforms of PTPsigma can alter the ligand binding specificities of PTPsigma ectodomains. The data suggest that the alternative domains function largely to change the rotational conformations of the amino-terminal ligand binding sites of the ectodomain dimers, thus imparting novel ligand binding properties. These findings have important implications for our understanding of how heterophilic ligands interact with, and potentially regulate, RPTPs. 相似文献
14.
Agrin activates MuSK, a receptor tyrosine kinase expressed in skeletal muscle, leading to tyrosine phosphorylation of the acetylcholine receptor (AChR) beta-subunit and clustering of AChRs. The importance of AChR beta-subunit tyrosine phosphorylation in clustering AChRs and regulating synaptic differentiation is poorly understood. We generated mice with targeted mutations in the three intracellular tyrosines of the AChR beta-subunit (AChR-beta(3F/3F)). Mice lacking AChR beta-subunit tyrosine phosphorylation thrive postnatally and have no overt behavioral defects, indicating that AChR beta-subunit tyrosine phosphorylation is not essential for the formation of neuromuscular synapses. Nonetheless, the size of synapses and the density of synaptic AChRs are reduced in AChR- beta(3F/3F) mutant mice. Moreover, synapses are structurally simplified and the organization of postjunctional folds is aberrant in mice lacking tyrosine phosphorylation of the AChR beta-subunit. Furthermore, mutant AChRs cluster poorly in response to agrin and are readily extracted from the cell surface of cultured myotubes by non-ionic detergent. These data indicate that tyrosine phosphorylation of the AChR beta-subunit has an important role in organizing AChRs and regulating synaptic differentiation. 相似文献
15.
Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B 总被引:2,自引:1,他引:2 下载免费PDF全文
Delibegovic M Bence KK Mody N Hong EG Ko HJ Kim JK Kahn BB Neel BG 《Molecular and cellular biology》2007,27(21):7727-7734
Obesity and type 2 diabetes are characterized by insulin resistance. Mice lacking the protein-tyrosine phosphatase PTP1B in all tissues are hypersensitive to insulin but also have diminished fat stores. Because adiposity affects insulin sensitivity, the extent to which PTP1B directly regulates glucose homeostasis has been unclear. We report that mice lacking PTP1B only in muscle have body weight and adiposity comparable to those of controls on either chow or a high-fat diet (HFD). Muscle triglycerides and serum adipokines are also affected similarly by HFD in both groups. Nevertheless, muscle-specific PTP1B(-/-) mice exhibit increased muscle glucose uptake, improved systemic insulin sensitivity, and enhanced glucose tolerance. These findings correlate with and are most likely caused by increased phosphorylation of the insulin receptor and its downstream signaling components. Thus, muscle PTP1B plays a major role in regulating insulin action and glucose homeostasis, independent of adiposity. In addition, rosiglitazone treatment of HFD-fed control and muscle-specific PTP1B(-/-) mice revealed that rosiglitazone acts additively with PTP1B deletion. Therefore, combining PTP1B inhibition with thiazolidinediones should be more effective than either alone for treating insulin-resistant states. 相似文献
16.
Chen MS Hurov J White LS Woodford-Thomas T Piwnica-Worms H 《Molecular and cellular biology》2001,21(12):3853-3861
17.
Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP 总被引:3,自引:0,他引:3 下载免费PDF全文
Galic S Klingler-Hoffmann M Fodero-Tavoletti MT Puryer MA Meng TC Tonks NK Tiganis T 《Molecular and cellular biology》2003,23(6):2096-2108
The human protein tyrosine phosphatase TCPTP exists as two forms: an endoplasmic reticulum-targeted 48-kDa form (TC48) and a nuclear 45-kDa form (TC45). Although targeted to the nucleus, TC45 can exit in response to specific stimuli to dephosphorylate cytoplasmic substrates. In this study, we investigated the downregulation of insulin receptor (IR) signaling by TCPTP. In response to insulin stimulation, the TC48-D182A and TC45-D182A "substrate-trapping" mutants formed stable complexes with the endogenous tyrosine-phosphorylated IR beta-subunit in 293 cells. Moreover, in response to insulin stimulation, the TC45-D182A mutant accumulated in the cytoplasm of cells overexpressing the IR and in part colocalized with the IR beta-subunit at the cell periphery. These results indicate that the IR may serve as a cellular substrate for both TC48 and TC45. In immortalized TCPTP(-/-) murine embryo fibroblasts, insulin-induced IR beta-subunit tyrosine phosphorylation and protein kinase PKB/Akt activation were enhanced relative to the values in TCPTP(+/+) cells. Importantly, the expression of TC45 or TC48 to physiological levels suppressed the enhanced insulin-induced signaling in TCPTP(-/-) cells. These results indicate that the differentially localized variants of TCPTP may dephosphorylate the IR and downregulate insulin-induced signaling in vivo. 相似文献
18.
Eswaran J Debreczeni JE Longman E Barr AJ Knapp S 《Protein science : a publication of the Protein Society》2006,15(6):1500-1505
The receptor-type protein tyrosine phosphatases (RPTPs) are integral membrane proteins composed of extracellular adhesion molecule-like domains, a single transmembrane domain, and a cytoplasmic domain. The cytoplasmic domain consists of tandem PTP domains, of which the D1 domain is enzymatically active. RPTPkappa is a member of the R2A/IIb subfamily of RPTPs along with RPTPmu, RPTPrho, and RPTPlambda. Here, we have determined the crystal structure of catalytically active, monomeric D1 domain of RPTPkappa at 1.9 A. Structural comparison with other PTP family members indicates an overall classical PTP architecture of twisted mixed beta-sheets flanked by alpha-helices, in which the catalytically important WPD loop is in an unhindered open conformation. Though the residues forming the dimeric interface in the RPTPmu structure are all conserved, they are not involved in the protein-protein interaction in RPTPkappa. The N-terminal beta-strand, formed by betax association with betay, is conserved only in RPTPs but not in cytosolic PTPs, and this feature is conserved in the RPTPkappa structure forming a beta-strand. Analytical ultracentrifugation studies show that the presence of reducing agents and higher ionic strength are necessary to maintain RPTPkappa as a monomer. In this family the crystal structure of catalytically active RPTPmu D1 was solved as a dimer, but the dimerization was proposed to be a consequence of crystallization since the protein was monomeric in solution. In agreement, we show that RPTPkappa is monomeric in solution and crystal structure. 相似文献
19.
Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap junctions. Pervanadate, an inhibitor of protein tyrosine phosphatases, mimics activated Src in inhibiting Cx43 gap junctional communication, apparently by promoting tyrosine phosphorylation of the Cx43 C-terminal tail. However, the identity of the protein tyrosine phosphatase(s) that may normally prevent Src-induced gap junction closure is unknown. Receptor-like protein tyrosine phosphatases that mediate homotypic cell-cell interaction are attractive candidates. Here we show that receptor protein tyrosine phosphatase mu (RPTPmu) interacts with Cx43 in diverse cell systems. We find that the first catalytic domain of RPTPmu binds to Cx43. Our results support a model in which RPTPmu, or a closely related protein tyrosine phosphatase, interacts with the regulatory C-terminal tail of Cx43 to prevent Src-mediated closure of Cx43 gap junctional channels. 相似文献
20.
Type IIB receptor protein tyrosine phosphatases (RPTPs) are bi-functional cell surface molecules. Their ectodomains mediate stable, homophilic, cell-adhesive interactions, whereas the intracellular catalytic regions can modulate the phosphorylation state of cadherin/catenin complexes. We describe a systematic investigation of the cell-adhesive properties of the extracellular region of RPTPmu, a prototypical type IIB RPTP. The crystal structure of a construct comprising its N-terminal MAM (meprin/A5/mu) and Ig domains was determined at 2.7 A resolution; this assigns the MAM fold to the jelly-roll family and reveals extensive interactions between the two domains, which form a rigid structural unit. Structure-based site-directed mutagenesis, serial domain deletions and cell-adhesion assays allowed us to identify the four N-terminal domains (MAM, Ig, fibronectin type III (FNIII)-1 and FNIII-2) as a minimal functional unit. Biophysical characterization revealed at least two independent types of homophilic interaction which, taken together, suggest that there is the potential for formation of a complex and possibly ordered array of receptor molecules at cell contact sites. 相似文献