首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The interactions among five different gangliosides and three chemically related glycosphingolipids and their behaviour in mixed monolayers with six different phospholipids were investigated at the air/145 mM-NaCl interface at pH 5.6. 2. The mixed monolayers of any of the different gangliosides showed an immiscible behaviour at high surface pressures, with absence of interactions among them revealed by an ideal behaviour for mean molecular area and surface potential per molecule. 3. This behaviour was probably the consequence of steric hindrance and electrostatic repulsions between their polar head groups. 4. Di- and tri-sialogangliosides could be differentiated from neutral sphingolipids and monosialogangliosides on the basis of their interactions with phospholipids, which were correlated to the perpendicular electric field at the interface contributed by the carbohydrate residues. 5. The presence of the phosphocholine polar head group in phosphatidylcholine was important to establish interactions with di- and tri-sialogangliosides revealed by negative deviations from the ideal behaviour for mean molecular areas and mean surface potential per molecule. 6. The possible significance of these observations is discussed in relation to the participation of gangliosides in the organization of membranes and to their capability of inducing membrane fusion.  相似文献   

2.
We describe a method for analyzing the perbenzoyl derivatives of both neutral glycosphingolipids and gangliosides with a single high-performance liquid chromatography system. Use of this system, combined with endo- and/or exoglycosidase treatment of glycosphingolipids, provides a sensitive method for obtaining structural information on these compounds. This system has two advantages over previously published chromatography procedures: (i) it uses a commercially available column, and (ii) this single column can be used to analyze gangliosides and their neutral glycosphingolipid products generated by neuraminidase treatment. With this method, we have studied 24 different glycosphingolipids, containing one to ten sugars and one or two sialic acid residues, and have demonstrated its usefulness in evaluating the gangliosides present in human leukocytes.  相似文献   

3.
B Domon  C E Costello 《Biochemistry》1988,27(5):1534-1543
Glycosphingolipids and gangliosides have been investigated by using fast atom bombardment high-performance tandem mass spectrometry (FABMS/MS). Homologous compounds have been investigated in order to ascertain the fragmentation. Collision-induced dissociation spectra of the molecular species in the positive ion mode mainly afford information on the ceramide constitution (aglycon as a whole, N-acyl residue, and long-chain base), whereas negative ion spectra show fragments informative of the sugar sequence and the degree of branching of the carbohydrate. In the case of gangliosides carrying a complex oligosaccharide moiety, collision spectra of fragment ions have been performed in order to gain additional structural data. The advantage of tandem mass spectrometry over conventional fast atom bombardment mass spectrometry (FABMS) consists in the fact that collision spectra of the individual components from mixtures, as usually encountered with these kinds of samples, can be recorded. Furthermore, the exclusion of most of the interfering signals from the matrix allows the identification of pertinent fragments at low mass.  相似文献   

4.
Long chain base compositions of gangliosides containing mainly stearic acid could be determined without any chemical modification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction (DE MALDI-TOF MS). The analytical results for the long chain base compositions of various samples of GM1 from the brain tissues of patients with different diseases at different ages confirmed that the proportion of d20:1 (icosasphingosine) and d20 (icosa-sphinganine) of the total sphingosine bases increased quickly until adolescent or adult age and then remained constant slightly exceeding 50%; this value was evidently higher than the proportion of d20:1 and d20 of GM1 in various adult mammalian brains. A long chain base composition of GM1 from the brain tissue of a patient with infantile type of GM1-gangliosidosis at 4y2m was abnormal and so was in two sibling patients with Spielmeyer-Vogt type of juvenile amaurotic idiocy at 19y and 21y in spite of that in the latter there was no accumulation of GM1 in the brain tissue. On the other hand, a patient with adult type of GM1 gangliosidosis at 66y showed a local accumulation of GM1 in the putamen and caudate nucleus, but its long chain base composition was found to be normal. It was of interest that the white matter of Eker rat with hereditary renal carcinoma contained a large amount of plasmalocerebroside as compared with the amount of cerebroside and sphingomyelin. The individual molecular species of plasmalocerebroside were identified by DE MALDI-TOF MS.  相似文献   

5.
The gangliosides GM1b, GalNAc-GM1b and GD1α are typical compounds of concanavalin A stimulated splenic T lymphoblasts of CBA/J inbred mice. Their structural characterization has been described in previous studies. The intention of this work was the comparative TLC immunostaining analysis of the glycosphingolipid composition of lectin stimulated splenic T lymphoblasts obtained from six genetically different inbred mouse strains. The strains examined were AKR, BALB/c, C57BL/6, CBA/J, DBA/2 and WHT/Ht, which are commonly used for biochemical and immunological studies. The neutral glycosphingolipid GgOse4Cer, the precursor for GM1b-type gangliosides, was expressed by all six strains investigated. AKR, C57BL/6 and DBA/2 showed high and BALB/c, CBA/J and WHT/Ht diminished expression in T lymphoblasts, based on single cell calculation. The gangliosides GM1b and GalNAc-GM1b, elongation products of GgOse4Cer, displayed strain-specific differences in their intensities, which were found to correlate with the intensities of GgOse4Cer expression of the same strains. Concerning sialic acid substitution of gangliosides, GM1b and GalNAc-GM1b predominantly carry N-acetylneuraminic acid, whereas choleragenoid receptors GM1a and Gal-GalNAc-GM1b, which are also expressed by all six strains, are characterized by dominance of N-glycolylneuraminic acid. Two highly polar gangliosides, designated with X and Y, which have not been previously recognized in murine lymphoid tissue, were detected by positive anti-GalNAc-GM1b antibody and choleragenoid binding, respectively. Both gangliosides were restricted to AKR, DBA/2 and C57BL/6 mice. The other three strains BALB/c, CBA/J and WHT/Ht are lacking these structures. In summary, the GM1b-type pathway is quite active in all six strains analysed in this study. Strain-specific genetic variations in T lymphoblast gangliosides were observed with the occurrence of gangliosides X and Y. This study and data from other groups strongly indicate for GM1b-type gangliosides a functional association with T cell activation and leukocyte mediated reactions. Abbreviations: ConA, concanavalin A; GSL(s), glycosphingolipid(s); HPTLC, high-performance thin-layer chromatography; NeuAc, N-acetylneuraminic acid; NeuGc, N-glycolylneuraminic acid. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations (1977) [48] and the ganglioside nomenclature system of Svennerholm [49] for GM1a-type gangliosides. Glucosylceramide or GlcCer, Glcβ1-1Cer; lactosylceramide or LacCer, Galβ1-4Glcβ1-1Cer; gangliotriaosylceramide or GgOse3Cer or Gg3, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliotetraosylceramide or GgOse4Cer or Gg4, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliopentaosylceramide or GgOse5Cer, GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliohexaosylceramide or GgOse6Cer, Galβ1-3GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer. GM3, II3NeuAc-LacCer; GM1 or GM1a, II3NeuAc-GgOse4Cer; GM1b, IV3NeuAc-GgOse4Cer; GalNAc-GM1b, IV3NeuAc-GgOse5Cer; GD1a, IV3NeuAc, II3NeuAc-GgOse4Cer; GD1b, II3(NeuAc)2-GgOse4Cer; GD1c, IV3(NeuAc)2-GgOse4Cer; GD1α, IV3NeuAc, III6NeuAc-GgOse4Cer. Only NeuAc-substituted gangliosides are presented in this list of abbreviations This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Three isomeric ceramide tetrasaccharides — P blood-group active globoside, lacto-N-neotetraosyl ceramide as ABH blood-group precursor, both isolated from human erythrocytes and “asiologanglioside” from human brain as reference standard — and two ceramide pentasaccharides — H blood-group active glycosphingolipid, obtained from blood-group B active ceramide hexasaccharide of human B erythrocytes after α-galactosidase treatment and ceramide pentasaccharide from rabbit erythrocytes with B-like blood-group activity — were investigated by mass spectrometry after permethylation. The carbohydrate moiety exhibits differences not only concerning the sugar sequence but also with regard to the position of some glycosidie linkages: Oligosaccharides containing N-acetylhexosamine substituted at position 4 produce spectra that are distinctly different from those containing C-3 substituted N-acetylhexosamines, thus allowing the differentiation between type 1 and type 2 carbohydrate chains. Moreover, oligosaccharide ions with a hexose at the cleavage site exhibit a fragmentation pattern different from those with a N-acetylhexosamine at the “reducing terminal”. The intensity ratio between parent ion and parent ion — 32 mass units is Q ? 3 in the first case, whereas in the latter case Q is <1. The Q-values are given for 14 oligosaccharide ions. Differences in the composition of the ceramide residues can also be deduced from the mass spectra.  相似文献   

7.
The effect of temperature on the behaviour of four different gangliosides (GM3, GM1, GD1a and GT1b), sulphatide, ceramide (Cer) and three neutral glycosphingolipids (GalCer, Gg3Cer, Gg4Cer) was investigated in monolayers at the air-NaCl (145 mM) interface. GM1, GD1a and GT1b are liquid-expanded in the range of temperatures studied (5-65 degrees C). GM3, sulphatide, Cer and neutral glycosphingolipids show isothermal liquid-expanded----liquid-condensed transitions. The collapse pressure of ganglioside monolayers decreases with temperature, whereas neutral glycosphingolipids may show some maximum values at particular temperatures. The reduction of the molecular area of liquid-expanded glycosphingolipids under compression occurs with a favorable positive entropy change and an unfavorable negative enthalpy. By contrast, the compression of interfaces with a two-dimensional phase transition occurs with an unfavorable entropy but a favorable enthalpy change. From the temperature dependence of the surface pressure at which the two-dimensional phase transition takes place, a minimal temperature above which the isotherm becomes totally liquid-expanded can be obtained. For the different glycosphingolipids this temperature decreases in the order Cer greater than GalCer greater than sulphatide greater than Gg3Cer greater than Gg4Cer greater than GM3 greater than GM1 greater than GD1a greater than GT1b. This sequence is similar to that found for the calorimetrically determined transition temperatures (cf. Maggio, B., Ariga, T., Sturtevant, J.M. and Yu, R.K. (1985) Biochemistry 24, 1084-1092).  相似文献   

8.
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.  相似文献   

9.
The expression of neutral glycosphingolipids and gangliosides has been studied in human skeletal and heart muscle using indirect immunofluorescence microscopy. Transversal and longitudinal cryosections were immunostained with specific monoclonal and polyclonal antibodies against the neutral glycosphingolipids lactosylceramide, globoside, Forssman glycosphingolipid, gangliotetraosylceramide, lacto-N-neotetraosylceramide and against the gangliosides GM3(Neu5Ac) and GM1(Neu5Ac). To confirm the lipid nature of positive staining, control sections were treated with methanol and chloroform:methanol (1:1) before immunostaining. These controls were found to be either negative or strongly reduced in fluorescence intensity, suggesting that lipid bound oligosaccharides were detected. In human skeletal muscle, lactosylceramide was found to be the main neutral glycosphinogolipid. Globoside was moderately expressed, lacto-N-neotetraosylceramide and gangliotetraosylceramide were minimally expressed and Forssman glycosphingolipid was not detected in human skeletal muscle. The intensities of the immunohistological stains of GM3 and GM1 correlated to the fact that GM3 is the major ganglioside in skeletal muscle whereas GM1 is expressed only weakly. In human heart muscle globoside was the major neutral glycosphingolipid. Lactosylceramide and lacto-N-neotetraosylceramide were moderately expressed, gangliotetraosylceramide was weakly expressed and the Forssman glycosphingolipid was not expressed at all in cardiac muscle. GM3 and GM1 were detected with almost identical intensity. All glycosphingolipids were present in plasma membranes as well as at the intracellular level. Abbreviations used: BSA, bovine serum albumin; DAPI, 4,6-diamidine-2-phenylindole-dihydrochloride; DTAF, fluorescein isothiocyanate derivative; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid [50]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [51] and the nomenclature of Svennerholm [52]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gall-4Gall-4Glcl-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; Forssman GSL or GbOse3Cer, GalNAc1-3GalNAc1-3Gal1-4Gal1-4Gle1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1, II3Neu5Ac-GgOse4Cer; GD3 II3(Neu5Ac)2-LacCer; GD2, II3(Neu5Ac)2-GgOse3Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

10.
Two glycolipid transfer proteins that catalyze the transfer of gangliosides and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts have been isolated from calf brain. Purification procedures included differential centrifugation, precipitation at pH 5.1, ammonium sulfate precipitation, and gel filtration on Sephadex G-50 and G-75. The final stage employed fast protein liquid chromatography (Mono S), producing two peaks of activity. Apparent purity of the major peak (TP I) was approximately 85-90%, as judged by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis. That of the minor fraction (TP II) was less. The major band of both fractions had a molecular mass of approximately 20,000 daltons. Both proteins catalyzed the transfer of ganglioside GM1 as well as asialo-GM1, but transfer protein I was more effective with di- and trisialogangliosides. Transfer protein II appeared to be somewhat more specific for neutral glycolipids in that GA1 was transferred more rapidly than any of the gangliosides; however, lactosylceramide transfer was relatively slow. Neither protein catalyzed transfer of phosphatidylcholine.  相似文献   

11.
DEAE-silica gel has been shown to be an improvement over DEAE-Sephadex for the quantitative isolation of gangliosides and neutral glycosphingolipids from animal tissues or cells. Preliminary results indicated that it can also be used for protein separation. Direct comparative studies of DEAE-silica gel with DEAE-Sephadex showed preferences for the former for the following reasons: i) faster flow rate; ii) more rapid equilibration with the starting buffer; iii) easier regeneration; iv) more economical; and v) a lesser susceptibility to microbial attack.  相似文献   

12.
In the concentration range of 10(-5) to 10(-1) M Ca2+ modulates the thermotropic properties of several neutral and anionic glycosphingolipids (galactosylceramide, asialo-GM1, sulfatide, GM1, GD1a, GT1b) and of their mixtures with dipalmitoylphosphatidylcholine. The transition temperature of gangliosides is not appreciably changed while the transition enthalpy increases by 20% in the presence of Ca2+. The more marked effect of Ca2+ is on the thermotropic behavior of systems containing sulfatide. Increasing concentrations of Ca2+ between 10(-5) and 10(-3) M (up to a molar ratio of Ca2+/sulfatide 1:2) induce a progressive increase of both the transition temperature and enthalpy. Further increases up to 10(-1) M Ca2+ induce a new phase transition at a lower temperature. No evidence is found for induction of phase separation of pure glycosphingolipid-Ca2+ domains in mixtures of any of the glycosphingolipids with dipalmitoylphosphatidylcholine. The modification of the phase behavior of anionic glycosphingolipids by Ca2+ does not involve detectable variations of the intermolecular packing but is accompanied by marked modifications of the dipolar properties of the polar head group region.  相似文献   

13.
14.
A number of gangliosides were isolated from cat and sheep erythrocytes for use in analyzing the specificity of a panel of human anti-heterophile monoclonal antibodies. The structures of these compounds were determined by a combination of different procedures, including sugar analysis, glycosidase treatment, periodate oxidation, TLC immunostaining, methylation analysis, and mass spectrometry. These methods identified the cat erythrocytes gangliosides (C1 and C2) as N-glycolylneuraminic acid (NeuGc)-containing hematosides; C1 was shown to be NeuGc alpha 2----8NeuGc alpha 2----3Gal beta I----4Glc-Cer [NeuGc)2GD3) and C2 to be NeuAc alpha 2----8NeuGc alpha 2----3Gal beta 1----4Glc-Cer [NeuAc-NeuGc-)GD3). The two sheep gangliosides (S1 and S2) were found to be novel glycolipids based on the paragloboside sequence; S1 was identified as NeuGc alpha 2----8NeuGc alpha 2----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc-Cer [NeuGc)2-disialylparagloboside) and S2 as NeuAc alpha 2----8NeuGc alpha 2----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc-Cer [NeuAc-NeuGc-)-disialylparagloboside). Structural analysis of these compounds was aided by the use of 252Cf fission fragment ionization time-of-flight mass spectrometry. This method provided easily interpretable spectra on methylated derivatives which were particularly useful in determining the sialic acid composition of the gangliosides and the sequence of their disialosyl side chains.  相似文献   

15.
16.
The property of the dyes, acridine orange and methylene blue, to exhibit metachromatic changes upon binding to negatively charged groups that are within a defined spatial separation was employed to study the lateral and transverse topography of sulfatide and gangliosides GM1 and GD1a mixed with dipalmitoylphosphatidylcholine (DPPC) in unilamellar vesicles. The spectral changes of the dyes in the presence of liposomes containing anionic glycosphingolipids (GSLs) (hypochromism and frequency shift) are typical of polyanionic lattices while minor changes are found for neutral lipids. The metachromatic changes are abolished by the presence of Ca2+ in the external medium. The proportion of anionic GSLs accessible to the dyes on the external surface of the liposomes is greater as the GSLs are more complex (sulfatide less than GM1 less than GD1a) and as its proportion in the mixture decreases. The number of molecules of anionic GSLs that are laterally distributed on the external surface in a position favorable for the formation of dye dimers (at intermolecular distances not exceeding 1 nm) is greater for sulfatide than for ganglioside. This is correlated to the greater intermolecular distances and delocalization in ganglioside-, compared to sulfatide-containing interfaces. The experimental values indicate that the mixture with DPPC of any of the anionic GSLs studied behaves as if it was more enriched in the GSLs compared to the proportions of the whole mixture.  相似文献   

17.
At cell surface microdomains, glycosyl epitopes, carried either by glycosphingolipids, N- or O-linked oligosaccharides, are recognized by carbohydrate-binding proteins or complementary carbohydrates. In both cases, the carbohydrate epitopes may be clustered with specific signal transducers, tetraspanins, adhesion receptors or growth factor receptors. Through this framework, carbohydrates can mediate cell signaling leading to changes in cellular phenotype. Microdomains involved in carbohydrate-dependent cell adhesion inducing cell activation, motility, and growth are termed "glycosynapse". In this review a historical synopsis of glycosphingolipids-enriched microdomains study leading to the concept of glycosynapse is presented. Examples of glycosynapse as signaling unit controlling the tumor cell phenotype are discussed in three contexts: (i) Cell-to-cell adhesion mediated by glycosphingolipids-to-glycosphingolipids interaction between interfacing glycosynaptic domains, through head-to-head (trans) carbohydrate-to-carbohydrate interaction. (ii) Functional role of GM3 complexed with tetraspanin CD9, and interaction of such complex with integrins, or with fibroblast growth factor receptor, to control tumor cell phenotype and its reversion to normal cell phenotype. (iii) Inhibition of integrin-dependent Met kinase activity by GM2/tetraspanin CD82 complex in glycosynaptic microdomain. Data present here suggest that the organizational status of glycosynapse strongly affects cellular phenotype influencing tumor cell malignancy.  相似文献   

18.
Two gangliosides, provisionally named Gangliosides 1 and 2 in previous studies, were isolated from starfish, Asterina pectinifera by silicic acid, DEAE-Sephadex, and Iatrobeads column chromatography procedures, and preparative thin-layer chromatography, and their structures were established. On the basis of the results of partial acid hydrolysis, methylation and oxidation with chromium trioxide, Gangliosides 1 and 2 were proposed to be Ara p beta(1 leads to 6)Gal p beta(1 leads to 4)8-O-MeNeuGc(2 leads to 3)Gal p beta(1 leads to 4)Glc p beta(1 leads to 1)-ceramide and Ara p beta(1 leads to 6)Gal p beta(1 leads to 4)NeuGc(2 leads to 3)Gal p beta(1 leads to 4)Glc p beta(1 leads to 1)-ceramide, respectively. The ceramide moieties of both gangliosides had similar phytosphingosine and 2-hydroxy fatty acid compositions, and both gangliosides were structurally related to the previously described Ganglioside 3.  相似文献   

19.
1. Neutral glycosphingolipids of hamster fibroblast NIL cells have been characterized as follows: glucosylceramide, lactosylceramide (betaGall yields 4Glc yields Cer), a digalactosylceramide (alphaGall yields 4betaGal yields Cer), a trihexosylceramide (alphaGall yields 4betaGall yields 4Glc yields Cer), two kinds of ceramide tetrasaccharides (A: alphaGa1NAcl yields 3betaGalNAcl yields 3alphaGall yields 4betaGall yields 1Cer, a new type of Forssman active glycolipid; B: globoside, betaGalNAcl yields 3alphaGall yields 4betaGall yields 4betaGlc yields Cer), and a ceramide pentasaccharide having a classical structure for Forssman antigen (alphaGalNAcl yields 3betaGalNAcl yields 3alphaGall yields 4betaGall yields 4Glc yields Cer). 2. Neutral glycosphingolipids of polyoma virus-transformed NIL cells (NILpy) have been characterized as having an additional ceramide tetrasaccharide which was absent in normal NIL cells. The structure of this specific glycolipid was identified as lacto-N-neotetraosylceramide (betaGall yields 4betaGlc-NAcl yields 3betaGall yields 4Glc yields Cer). Chemical quantities of ceramide tetra- and pentasaccharides in NILpy cells were much lower than in NIL cells. 3. All of these glycolipids, except glucosylceramide and lactosylceramide, were labeled externally by galactose oxidase and tritiated borohydride according to the method previously described (GAHMBERG, C. G, and HAKOMORI, S. (1973) J. Biol. Chem. 248, 4311-4317). The specific activities of the label in glycolipid of NIHpy cells were much greater than that in NIL cells, i.e. reactivity of glycolipids with galactose oxidase in NIHpy cells was much higher than for NIL cells. The surface label in glycolipids was cell cycle-dependent in NIL cells, and a remarkable exposure of a galactosyl residue of a ceramide tetrasaccharide was demonstrated only on the surface of NILpy cells, due to the presence of lacto-N-neotetraosylceramide.  相似文献   

20.
Some parameters that may regulate the miscibility and stability of mixed lipid-protein monolayers at the air-145 mM NaCl interface were studied employing six glycosphingolipids (acidic or neutral), three different types of proteins (soluble, extrinsic or highly amphipathic) and some phospholipids. The results obtained show that the percentage of the total area occupied by the protein at the interface is an important parameter leading to lateral phase separations; the amount and area contribution of the protein accepted in the film before the components become immiscible increase with the complexity of the polar head group of the glycosphingolipids. The interactions occur with progressive reductions of the intermolecular packing as the polar head group of the glycosphingolipid becomes more complex and this is accompanied by more negative values of the excess free energy of mixing. The lipid component seems to be the major responsible for the reduction in mean molecular area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号