首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate cyclase (AC) toxin is present on the surface of Bordetella pertussis organisms and their addition to eukaryotic cells results in increases in intracellular cAMP. To test the hypothesis that surface-bound toxin is the source for intoxication of cells when incubated with B. pertussis, we characterized the requirements of intoxication from intact bacteria and found that this process is calcium-dependent and blocked by monoclonal antibody to AC toxin or antibody against CD11b, a surface glycoprotein receptor for the toxin. Increases in intracellular cAMP correlate with the number of adherent bacteria, not the total number present in the medium, suggesting that interaction of bacteria with target cells is important for efficient delivery of AC toxin. A filamentous haemagglutinin-deficient mutant (BP353) and a clinical isolate (GMT1), both of which have a marked reduction in AC toxin on their surface, and wild-type B. pertussis (BP338) from which surface AC toxin has been removed by trypsin, were fully competent for intoxicating target cells, demonstrating that surface-bound AC toxin is not responsible for intoxication. B. pertussis killed by gentamicin or gamma irradiation were unable to intoxicate, illustrating that toxin delivery requires viable bacteria. Furthermore, CCCP, a protonophore that disrupts the proton gradient necessary for the secretion of related RTX toxins, blocked intoxication by whole bacteria. These data establish that delivery of this toxin by intact B. pertussis is not dependent on the surface-associated AC toxin, but requires close association of live bacteria with target cells and the active secretion of AC toxin.  相似文献   

2.
The enzymatic activity of the three most studied bacterial toxins that increase the cytosolic cAMP level: pertussis toxin (PT), cholera toxin (CT), and anthrax edema toxin (ET), was imaged by fluorescence videomicroscopy. Three different cell lines were transfected with a fluorescence resonance energy transfer biosensor based on the PKA regulatory and catalytic subunits fused to CFP and YFP, respectively. Real-time imaging of cells expressing this cAMP biosensor provided time and space resolved pictures of the toxins action. The time course of the PT-induced cAMP increase suggests that its active subunit enters the cytosol more rapidly than that deduced by biochemical experiments. ET generated cAMP concentration gradients decreasing from the nucleus to the cell periphery. On the contrary, CT, which acts on the plasma membrane adenylate cyclase, did not. The potential of imaging methods in studying the mode of entry and the intracellular action of bacterial toxins is discussed.  相似文献   

3.
Anthrax toxin, a three-component protein toxin secreted by Bacillus anthracis, assembles into toxic complexes at the surface of receptor-bearing eukaryotic cells. The protective antigen (PA) protein binds to receptors, either tumor endothelial cell marker 8 (TEM8) or CMG2 (capillary morphogenesis protein 2), and orchestrates the delivery of the lethal and edema factors into the cytosol. TEM8 is reported to be overexpressed during tumor angiogenesis, whereas CMG2 is more widely expressed in normal tissues. To extend prior work on targeting of tumor with modified anthrax toxins, we used phage display to select PA variants that preferentially bind to TEM8 as compared with CMG2. Substitutions were randomly introduced into residues 605-729 of PA, within the C-terminal domain 4 of PA, which is the principal region that contacts receptor. Candidates were characterized in cellular cytotoxicity assays with Chinese hamster ovary (CHO) cells expressing either TEM8 or CMG2. A PA mutant having the substitutions R659S and M662R had enhanced specificity toward TEM8-overexpressing CHO cells. This PA variant also displayed broad and potent tumoricidal activity to various human tumor cells, especially to HeLa and A549/ATCC cells. By contrast, the substitution N657Q significantly reduced toxicity to TEM8 but not CMG2-overexpressing CHO cells. Our results indicate that certain amino acid substitutions within PA domain 4 create anthrax toxins that selectively kill human tumor cells. The PA R659S/M662R protein may be useful as a therapeutic agent for cancer treatment.  相似文献   

4.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

5.
Recent experimental evidence indicates that Escherichia coli heat-labile enterotoxin and the closely related cholera toxin gain access to intracellular target substrates through a brefeldin A-sensitive pathway that may involve retrograde transport through the Golgiendoplasmic reticulum network. The A subunits of both toxins possess a carboxy-terminal tetrapeptide sequence (KDEL in cholera toxin and RDEL in the heat-labile enterotoxins) that is known to mediate the retention of eukaryotic proteins in the endoplasmic reticulum. To investigate the potential role of the RDEL sequence in the toxic activity of the heat-labile enterotoxin we constructed mutant analogues of the toxin containing single substitutions (RDGL and RDEV) or a reversed sequence (LEDR). The single substitutions had little effect on Chinese hamster ovary cell elongation or the ability to stimulate cAMP accumulation in Caco-2 cells. Reversal of the sequence reduced the ability of the toxin to increase cAMP levels in Caco-2 cells by approximately 60% and decreased the ability to elicit elongation of Chinese hamster ovary cells. The effects of the heat-labile enterotoxin were not diminished in a mutant Chinese hamster ovary cell line (V.24.1) that belongs to the End4 complementation group and possesses a temperature-sensitive block in secretion that correlates directly with the disappearance of the Golgi stacks. Collectively, these findings suggest that the brefeldin A-sensitive process involved in intoxication by the heat-labile enterotoxin does not involve RDEL-dependent retrograde transport of the A subunit through the Golgi-endoplasmic reticulum complex. The results are more consistent with a model of internalization involving translocation of the A subunit from an endosomal or a trans-Golgi network compartment.  相似文献   

6.
Effects of the three-component toxin of Bacillus anthracis on chemotaxis of human polymorphonuclear leukocytes (PMN) were investigated in an effort to determine the basis of the reported antiphagocytic effect of the toxin. The three toxin components, edema factor (EF), protective antigen (PA), and lethal factor (LF), were tested alone and in various combinations for their effect on PMN chemotaxis under agarose to formyl peptides and zymosan-activated serum. No component was active alone; combinations of EF + PA, LF + PA, and EF + LF + PA markedly stimulated chemotaxis (directed migration), but had little or no effect on unstimulated random migration. The toxin components were not themselves chemoattractants. EF in combination with PA had previously been identified as an adenylate cyclase in Chinese hamster ovary (CHO) cells. We found that EF + PA produced detectable cyclic adenosine 3'-5'monophosphate (cAMP) in PMN, but the level of cAMP was less than 1% of that produced in CHO cells by EF + PA, and in PMN by other bacterial adenylate cyclases. LF + PA (which stimulated chemotaxis to an equivalent extent) had no effect on cAMP levels. Thus, the enhancement of chemotaxis by anthrax toxin (at least by LF + PA) does not seem to be related to adenylate cyclase activity.  相似文献   

7.
Bacillus anthracis, the causative agent of anthrax, secretes two bipartite toxins that help the bacterium evade the immune system and contribute directly to pathogenesis. Both toxin catalytic moieties, lethal factor (LF) and oedema factor (OF), are internalized into the host-cell cytosol by a third factor, protective antigen (PA), which binds to cellular anthrax toxin receptors (ANTXRs). Oedema factor is an adenylate cyclase that impairs host defences by raising cellular cAMP levels. Here we demonstrate that oedema toxin (PA + OF) induces an increase in ANTXR expression levels in macrophages and dendritic cells resulting in an increased rate of toxin internalization. Furthermore, we show that increases in ANTXR mRNA levels depends on the ability of OF to increase cAMP levels, is mediated through protein kinase A-directed signalling and is monocyte-lineage-specific. To our knowledge, this is the first report of a bacterial toxin inducing host target cells to increase toxin receptor expression.  相似文献   

8.
Bordetella pertussis produces a calmodulin-activated adenylate cyclase (AC) that exists in several forms. Only one form of AC, of apparent 200 kDa, is a toxin that penetrates eukaryotic cells and generates uncontrolled levels of intracellular cAMP. Recombination studies in transposon Tn5-insertion mutants of B. pertussis and amino acid sequence homology with alpha-hemolysin of Escherichia coli suggested that AC toxin may also have a hemolytic activity. Here, we demonstrate that only the toxic form of B. pertussis AC possesses hemolytic activity. Immunoblotting of membranes from sheep erythrocytes throughout the process of cell lysis detects the presence and accumulation of only the 200-kDa form of B. pertussis AC. cAMP generation induced by AC toxin in sheep erythrocytes is immediate whereas appearance of hemolysis is delayed by about 1 h and requires a higher level of AC toxin activity. Addition of exogenous calmodulin to sheep erythrocyte incubation medium potentiates the hemolytic activity of AC toxin but blocks cAMP generation. Extracellular Ca2+ at mM concentrations is absolutely required for cAMP generation but not for hemolysis. However, binding of AC toxin to sheep erythrocytes in the absence of exogenous Ca2+ followed by reincubation of cells in a toxin-free buffer containing Ca2+ leads to an immediate rise in intracellular cAMP. Human erythrocytes bind AC toxin and generate cAMP but are resistant to lysis. These results show that binding of AC toxin to erythrocytes can cause both cAMP generation and hemolysis or only one of these depending on conditions applied and cell type used.  相似文献   

9.
Anthrax is the disease caused by the Gram-positive bacterium Bacillus anthracis. Two toxins secreted by B. anthracis - lethal toxin (LT) and oedema toxin (OT) - contribute significantly to virulence. Although these toxins have been studied for half a century, recent evidence indicates that LT and OT have several roles during infection not previously ascribed to them. Research on toxin-induced effects other than cytolysis of target cells has revealed that LT and OT influence cell types previously thought to be insensitive to toxin. Multiple host factors that confer sensitivity to anthrax toxin have been identified recently, and evidence indicates that the toxins probably contribute to colonisation and invasion of the host. Additionally, the toxins are now known to cause a wide spectrum of tissue and organ pathophysiologies associated with anthrax. Taken together, these new findings indicate that anthrax-toxin-associated pathogenesis is much more complex than has been traditionally recognised.  相似文献   

10.
The cytotoxic effect of adenylate cyclase (AC) toxin from Bordetella pertussis on host cells has been attributed to the production of supraphysiologic levels of cyclic AMP by the toxin. We have tested this hypothesis and show that at least two different mechanisms, cAMP accumulation/ATP depletion and oligomerization/pore formation, contribute, perhaps synergistically, to AC toxin-induced cytotoxicity. Wild-type (WT) AC toxin causes cell death associated with an increase in cAMP, a reduction in ATP, activation of caspases 3/7, and increased annexin V and TUNEL staining. In contrast, a non-acylated, enzymatically active, non-haemolytic form of AC toxin is able to increase cAMP, reduce ATP and elicit annexin V staining, but the decrease in ATP and the annexin staining are transient and there is minimal caspase activation, TUNEL staining and cell death. Mutant AC toxins defective in either enzymatic activity or the ability to deliver their enzymatic domain are able to kill J774 cells, without cAMP production, and with minimal caspase activation and TUNEL staining. Comparison of the potencies of WT toxin and those of mutants that only increase cAMP or only create transmembrane pores establishes that at least two mechanisms are contributory and that simply the production of cAMP is not enough to account for the cytotoxicity produced by AC toxin.  相似文献   

11.
The interaction of pertussis toxin (PT) with cells and model membranes was investigated by examining PT-induced intoxication of Chinese hamster ovary cells and by studying the binding of PT and its subunits to phospholipid vesicles. Since certain bacterial toxins require an acidic environment for efficient interaction with membranes and subsequent entry into the cell, the requirement for an acidic environment for PT action was examined. PT, unlike bacterial toxins such as diphtheria toxin, did not require an acidic environment for efficient intoxication of Chinese hamster ovary cells. Potential modes by which PT might interact with biological membranes were studied by examining the binding of PT to a model membrane system. PT was found to be capable of interacting with phospholipid vesicles, however, efficient binding of the toxin to the vesicles occurred only in the presence of both ATP and reducing agent. The A subunit portion of the toxin bound preferentially to the vesicles while little binding of the B oligomer portion of PT to the model membranes was observed. Isolated A subunit, in the absence of the B oligomer, also bound to the vesicles with optimal binding occurring in the presence of reducing agent. After cleavage of the A subunit by trypsin, probably at Arg-181, Arg-182, and/or Arg-193, large fragments which lacked the C-terminal portion of the A subunit of PT no longer associated with the lipid vesicles. These results suggest that the A subunit of PT can interact directly with a lipid matrix and, if freed from the constraints imposed by the B oligomer, may be capable of interacting with cellular membranes.  相似文献   

12.
Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells are essential to anthrax infection.  相似文献   

13.
Anthrax toxins and the host: a story of intimacy   总被引:4,自引:0,他引:4  
Although the dramatic events of the year 2001 have revitalized the interest in anthrax, research on Bacillus anthracis and its major virulence factors is one of the oldest theme in microbiology and started with the early works of Robert Koch and Louis Pasteur. The anthrax toxins are central to anthrax pathogenesis. They were discovered in the mid-1950s and since then there has been an enormous amount of work to elucidate both the molecular and physiopathological details of their mode of action. In this review, after a brief introduction of B. anthracis, we will focus on the latest findings that concern two aspects of anthrax toxin research: the environmental signals and the molecular mechanisms that regulate toxin synthesis, and the mechanisms of intoxication. We hope to convince the reader that the anthrax toxins are highly specialized determinants of B. anthracis pathogenicity: their synthesis is integrated within a global virulence programme and they target key eukaryotic cell proteins. We conclude with a consideration of the therapeutic perspectives arising from our current knowledge of how the toxins work.  相似文献   

14.
Bacillus anthracis spores germinate to vegetative forms in host cells, and produced fatal toxins. A toxin-targeting prophylaxis blocks the effect of toxin, but may allow to grow vegetative cells which create subsequent toxemia. In this study, we examined protective effect of extractable antigen 1 (EA1), a major S-layer component of B. anthracis, against anthrax. Mice were intranasally immunized with recombinant EA1, followed by a lethal challenge of B. anthracis spores. Mucosal immunization with EA1 resulted in a significant level of anti-EA1 antibodies in feces, saliva and serum. It also delayed the onset of anthrax and remarkably decreased the mortality rate. In addition, the combination of EA1 and protective antigen (PA) protected all immunized mice from a lethal challenge with B. anthracis spores. The numbers of bacteria in tissues of EA1-immunized mice were significantly decreased compared to those in the control and PA alone-immunized mice. Immunity to EA1 might contribute to protection at the early phase of infection, i.e., before massive multiplication and toxin production by vegetative cells. These results suggest that EA1 is a novel candidate for anthrax vaccine and provides a more effective protection when used in combination with PA.  相似文献   

15.
Where and how do anthrax toxins exit endosomes to intoxicate host cells?   总被引:1,自引:0,他引:1  
The role of Bacillus anthracis virulence factors in its pathogenesis has been subjected to intense investigation with the aim of finding novel preventive and therapeutic protocols. Toxins that are endocytosed and act in the cytosol of host cells have a central role in B. anthracis infection. Understanding of anthrax toxin cell entry has increased during the past few years and a composite picture is emerging. Nevertheless, unanswered and controversial questions remain, particularly concerning the site and mode of anthrax toxin cell entry, the role of anthrax toxin receptors in the process and the possible involvement of cytosolic chaperones, which might affect entry efficiency. Here, the current model of anthrax toxin cell entry, an alternative model and experimental approaches for clarifying unanswered questions will be discussed.  相似文献   

16.
The previously cloned rat nerve growth factor-regulated G protein-coupled receptor NRG-1 (Glickman, M., Malek, R. L., Kwitek-Black, A. E., Jacob, H. J., and Lee N. H. (1999) Mol. Cell. Neurosci. 14, 141-52), also known as EDG-8, binds sphingosine-1-phosphate (S1P) with high affinity and specificity. In this paper we examined the signal transduction pathways regulated by the binding of S1P to EDG-8. In Chinese hamster ovary cells heterologously expressing EDG-8, S1P inhibited forskolin-induced cAMP accumulation and activated c-Jun NH2-terminal kinase. Surprisingly, S1P inhibited serum-induced activation of extracellular regulated protein kinase 1 and 2 (ERK1/2). Treatment with pertussis toxin, which ADP-ribosylates and inactivates G(i), blocked S1P-mediated inhibition of cAMP accumulation, but had no effect on c-Jun NH2-terminal kinase activation or inhibition of ERK1/2. The inhibitory effect of S1P on ERK1/2 activity was abolished by treatment with orthovanadate, suggesting the involvement of a tyrosine phosphatase. A subunit selective [35S] guanosine 5'-3-O-(thio)triphosphate binding assay demonstrates that EDG-8 activated G(i/o) and G12 but not Gs and G(q/11) in response to S1P. In agreement, EDG-8 did not stimulate phosphoinositide turnover or cAMP accumulation. The ability of S1P to induce mitogenesis in cells expressing the EDG-1 subfamily of G protein-coupled receptors is well characterized. In contrast, S1P inhibited proliferation in Chinese hamster ovary cells expressing EDG-8 but not empty vector. The antiproliferative effect, like S1P-mediated ERK1/2 inhibition, was orthovanadate-sensitive and pertussis toxin-insensitive. Our results indicate that EDG-8, a member of the EDG-1 subfamily, couples to unique signaling pathways.  相似文献   

17.
Bordetella pertussis adenylate cyclase (AC) toxin belongs to the RTX family of toxins but is the only member with a known catalytic domain. The principal pathophysiologic function of AC toxin appears to be rapid production of intracellular cyclic AMP (cAMP) by insertion of its catalytic domain into target cells (referred to as intoxication). Relative to other RTX toxins, AC toxin is weakly hemolytic via a process thought to involve oligomerization of toxin molecules. Monoclonal antibody (MAb) 3D1, which binds to an epitope (amino acids 373 to 399) at the distal end of the catalytic domain of AC toxin, does not affect the enzymatic activity of the toxin (conversion of ATP into cAMP in a cell-free system) but does prevent delivery of the catalytic domain to the cytosol of target erythrocytes. Under these conditions, however, the ability of AC toxin to cause hemolysis is increased three- to fourfold. To determine the mechanism by which the hemolytic potency of AC toxin is altered, we used a series of deletion mutants. A mutant toxin, DeltaAC, missing amino acids 1 to 373 of the catalytic domain, has hemolytic activity comparable to that of wild-type toxin. However, binding of MAb 3D1 to DeltaAC enhances its hemolytic activity three- to fourfold similar to the enhancement of hemolysis observed with 3D1 addition to wild-type toxin. Two additional mutants, DeltaN489 (missing amino acids 6 to 489) and DeltaN518 (missing amino acids 6 to 518), exhibit more rapid hemolysis with quicker onset than wild-type toxin does, while DeltaN549 (missing amino acids 6 to 549) has reduced hemolytic activity compared to wild-type AC toxin. These data suggest that prevention of delivery of the catalytic domain or deletion of the catalytic domain, along with additional amino acids distal to it, elicits a conformation of the toxin molecule that is more favorable for hemolysis.  相似文献   

18.
The interaction of anthrax toxin protective antigen (PA) and target cells was assessed, and the importance of the cytosolic domain of tumor endothelium marker 8 (TEM8) in its function as a cellular receptor for PA was evaluated. PA binding and proteolytic processing on the Chinese hamster ovary cell surface occurred rapidly, with both processes nearly reaching steady state in 5 min. Remarkably, the resulting PA63 fragment was present on the cell surface only as an oligomer, and furthermore, the oligomer was the only PA species internalized, suggesting that oligomerization of PA63 triggers receptor-mediated endocytosis. Following internalization, the PA63 oligomer was rapidly and irreversibly transformed to an SDS/heat-resistant form, in a process requiring an acidic compartment. This conformational change was functionally correlated with membrane insertion, channel formation, and translocation of lethal factor into the cytosol. To explore the role of the TEM8 cytosolic tail, a series of truncated TEM8 mutants was transfected into a PA receptor-deficient Chinese hamster ovary cell line. Interestingly, all of the cytosolic tail truncated TEM8 mutants functioned as PA receptors, as determined by PA binding, processing, oligomer formation, and translocation of an lethal factor fusion toxin into the cytosol. Moreover, cells transfected with a TEM8 construct truncated before the predicted transmembrane domain failed to bind PA, demonstrating that residues 321-343 are needed for cell surface anchoring. Further evidence that the cytosolic domain plays no essential role in anthrax toxin action was obtained by showing that TEM8 anchored by a glycosylphosphatidylinositol tail also functioned as a PA receptor.  相似文献   

19.
The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against toxin have been licensed for human use, but need improvement. Vaccines against bacilli have recently been developed by us and others. Whether effective vaccines will be developed against spores is still an open question. An ideal vaccine would confer simultaneous protection against spores, bacilli, and toxins. One step towards this goal is our dually active vaccine, designed to destroy both bacilli and toxin. Existing and potential strategies towards potent and effective anthrax vaccines are discussed in this review.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号