首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
移植骨髓间充质干细胞治疗大鼠糖尿病的研究   总被引:1,自引:0,他引:1  
目的 通过移植骨髓间充质干细胞(mesenchymal stem cell,MSC)的方法试治疗大鼠糖尿病。方法 贴壁生长的MSC与大鼠胰腺的细胞共培养以检测其向胰岛细胞分化的潜能。并将体外培养扩增的MSC移植入糖尿病大鼠体内,观测其能否改善糖尿病病情及其在大鼠体内微环境中的分化情况。结果 共培养法可使MSC分化为胰岛样细胞。对大鼠的MSC移植能明显缓解糖尿病病情。结论 MSC移植的方法对大鼠糖尿病有一定的治疗作用。  相似文献   

2.
糖尿病是目前困扰人类健康的第三大杀手。胰岛移植作为糖尿病的一种有效方法早已得到公认,但是胰岛供体的缺乏和移植排斥反应的存在限制了胰岛移植的临床应用[1]。胰岛素替代疗法是目前治疗糖尿病最有效的方法。然而这种方法也有许多缺陷。间充质干细胞(mesenchymal stem cell,MSC)具有多向分化潜能的均质性细胞,具有供源丰富、易于获得、有自由供体、避免免疫排斥等优点,因而是较为理想的胰岛B细胞来源[2]。近年来,众多实验研究表明了通过诱导MSC分化为胰岛B细胞治疗糖尿病的可能性。  相似文献   

3.
胰腺或胰岛细胞移植是目前治疗Ⅰ型糖尿病和部分Ⅱ型糖尿病效果最理想的方法,但因来源组织短缺及需要终生服用免疫抑制剂等问题限制了它的广泛应用.利用胰腺或胰腺外的多能干细胞产生胰岛样细胞有望克服上述问题而用于治疗糖尿病.本文就将干细胞诱导分化为胰岛样细胞中所用的重要的转录因子和可溶性诱导因子及其作用以及胰岛素分泌细胞的来源做一综述.  相似文献   

4.
干细胞具有多向分化潜能,可以被小分子化合物诱导分化为胰岛素分泌细胞,进而移植到体内代替受损的胰岛β细胞,从根本上治愈糖尿病。小分子化合物种类繁多,具有无免疫原性、可控性强等优点,因此,利用小分子化合物诱导干细胞分化为胰岛素分泌细胞来治疗糖尿病是将来比较有前景的治疗方案。该综述主要分类概述了化学诱导法中经常使用的小分子化合物及其在相应阶段发挥的作用。  相似文献   

5.
姚艳丽  冯凭 《生命的化学》2005,25(4):316-317
近年来研究表明,胰高血糖素样肽-1(GLP-1)对胰岛β细胞的分化、增殖均起重要作用,包括抑制β细胞凋亡、刺激β细胞增生、诱导干细胞分化为胰腺内分泌细胞,从而使被破坏的胰岛细胞恢复分泌胰岛素的功能,这些作用为其治疗Ⅰ型糖尿病提供了证据,使其成为Ⅰ型糖尿病治疗领域研究的热点。  相似文献   

6.
脐带血造血干细胞具有极强的自我更新和多向分化潜能,为治疗糖尿病开辟了新的途径,造血干细胞在生成胰岛素分泌细胞前需要经过诱导分化、细胞选择和细胞成熟三个阶段。目前,脐带血造血干细胞在治疗糖尿病中已取得一定进展,将造血干细胞定向分化为胰岛β细胞成为了治疗的关键。本文通过对脐带血的特征、造血干细胞的制备和移植、糖尿病的治疗以及脐带血造血干细胞移植的利与弊等方面进行的归纳总结,分析脐带血造血干细胞在治疗糖尿病方面的进展和应用前景。  相似文献   

7.
I型糖尿病是胰岛β细胞破环的自身免疫性疾病.I型糖尿病胰岛移植是治疗I型糖尿病的有效方法.胚胎干细胞能够分化为包括胰岛素分泌细胞在内的多种细胞类型.胚胎干细胞是治疗I型糖尿病的潜在来源.综述了近年来胚胎干细胞分化为胰岛素分泌细胞的研究进展,主要阐述了胰腺发育的转录因子和不同的分化方法.  相似文献   

8.
利用成体干细胞治疗糖尿病   总被引:1,自引:0,他引:1  
糖尿病是一类严重的代谢疾病, 正危害着世界上越来越多人口的健康。胰岛移植是一种治疗糖尿病的有效方法,却因供体缺乏和移植后免疫排斥问题制约了其广泛应用。干细胞为具有强增殖能力和多向分化潜能的细胞, 是利用细胞替代疗法治疗重大疾病的细胞来源之一, 其中成体干细胞因不存在致瘤性及伦理道德问题而被人们寄予厚望。成体胰腺干细胞在活体损伤及离体培养条件下均能产生胰岛素分泌细胞, 肝干细胞、骨髓干细胞和肠干细胞等在特定离体培养条件下或经过遗传改造后也均可产生胰岛素分泌细胞, 将这些干细胞来源的胰岛素分泌细胞移植到模型糖尿病小鼠中可以治疗糖尿病。因而, 成体干细胞可以为细胞替代疗法治疗糖尿病提供丰富的胰岛供体来源。  相似文献   

9.
周淑艳  张毅  齐晖  李富荣 《生命科学》2012,(10):1207-1210
糖尿病是一种由胰岛素分泌缺陷和(或)胰岛素作用缺陷引起的高血糖症性代谢疾病。自Edmonton临床试验取得成功后,胰岛移植成为一种新型治愈糖尿病的方法。但胰岛β细胞在体外分离过程中极易发生凋亡或死亡,且长期的体外培养或冷冻储存也容易令其胰岛素分泌功能逐渐丧失。因此,有效维持或改善β细胞的成活率及功能对胰岛移植的成功至关重要。对胰岛β细胞的体外保护方法进行阐述,并对其研究前景进行展望。  相似文献   

10.
高庆坤  孔娜  宋春芳  周毅 《生物磁学》2014,(4):795-797,782
胰岛移植已经被公认为治疗胰岛素依赖型糖尿病(IMDD)的有效手段,而现如今胰岛移植的最大障碍是移植排斥反应。目前控制胰岛移植的免疫抑制治疗因其对胰岛细胞的毒性作用及长期应用带来的全身并发症而无法在临床推广,诱导移植术后受体的免疫耐受是防止排斥反应的最理想方法。本文综述了诱导免疫耐受的途径及胰岛移植的最新实验进展。随着研究的深入和免疫学的发展,相信在未来的胰岛移植治疗糖尿病领域,移植排斥现象将能得到高效可靠的解决。  相似文献   

11.
Regenerative therapeutic approaches involving the transplantation of stem cells differentiated into insulin-producing cells are being studied in patients with rapidly progressing severe diabetes. Adipose-derived mesenchymal stem cells have been reported to have varied cellular characteristics depending on the biological environment of the location from which they were harvested. However, the characteristics of mesenchymal stem cells in type II diabetes have not been clarified. In this study, we observed the organelles of mesenchymal stem cells from patients with type II diabetes under a transmission electron microscope to determine the structure of stem cells in type II diabetes. Transmission electron microscopic observation of mesenchymal stem cells from healthy volunteers (N-ADSC) and those from patients with type II diabetes (T2DM-ADSC) revealed enlarged nuclei and degenerated mitochondrial cristae in T2DM-ADSCs. Moreover, T2DM-ADSCs were shown to exhibit a lower expression of Emerin, a constituent protein of the nuclear membrane, and a decreased level of mitochondrial enzyme activity. In this study, we successfully demonstrated the altered structure of nuclear membrane and the decreased mitochondrial enzyme activity in adipose-derived mesenchymal cells from patients with type II diabetes. These findings have contributed to the understanding of type II diabetes-associated changes in mesenchymal stem cells used for regenerative therapy.  相似文献   

12.
13.
Diabetes mellitus is a challenging autoimmune disease. Biomedical researchers are currently exploring efficient and effective ways to solve this challenge. The potential of stem cell therapies for treating diabetes represents one of the major focuses of current research on diabetes treatment. Here, we have attempted to differentiate adult stem cells from umbilical cord blood-derived mesenchymal cells (UCB-MSC), Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) and amniotic epithelial stem cells (AE-SC) into insulin-producing cells. The serum-free protocol developed in this study resulted in the differentiation of cells into definitive endoderm, pancreatic foregut, pancreatic endoderm and, finally, pancreatic endocrine cells, which expressed the marker genes SOX17, PDX1, NGN3, NKX6.1, INS, GCG, and PPY, respectively. Detection of the expression of the gap junction-related gene connexin-36 (CX36) using RT-PCR provided conclusive evidence for insulin-producing cell differentiation. In addition to this RT-PCR result, insulin and C-peptide protein were detected by immunohistochemistry and ELISA. Glucose stimulation test results showed that significantly greater amounts of C-peptide and insulin were released from differentiated cells than from undifferentiated cells. In conclusion, the methods investigated in this study can be considered an effective and efficient means of obtaining insulin-producing cells from adult stem cells within a week.  相似文献   

14.
15.
Cell therapy is thought to be a possible approach for treatment of diabetes. Cells with the ability to differentiate into insulin-producing cells (IPCs) would provide an unlimited source of islet cells for transplantation. In this study, the differentiation capacity of rat bone-marrow-derived mesenchymal stem cells (MSCs) to IPCs and the feasibility of using them for reversal of hyperglycemia were investigated. In vitro studies indicated that treatment of cells with high glucose concentration, nicotinamide and β-mercaptoethanol resulted to differentiated cells, which had characteristics of IPCs including spherical, grape-like morphology, secretion of insulin, and being positive for dithizone. To test the in vivo function of differentiated MSCs, they were injected into the spleen of diabetic rats. It was shown that diabetic rats who received IPCs, significantly reduced the glucose level, in response to intraperitoneal glucose tolerance (IPGT) test. These results indicate that MSCs are capable of in vitro differentiation into functional IPCs, which can reverse hyperglycemia in rat model of diabetes.  相似文献   

16.
Recent reports have suggested that mesenchymal cells derived from bone marrow may differentiate into not only mesenchymal lineage cells but also other lineage cells. There is possibility for insulin-producing cells (IPCs) to be differentiated from mesenchymal cells. We used self-functional repair stimuli of stem cells by partial injury. Rat pancreatic extract (RPE) from the regenerating pancreas (2 days after 60% pancreatectomy) was treated to rat mesenchymal cells. After the treatment of RPE, they made clusters like islet of Langerhans within a week and expressed four pancreatic endocrine hormones; insulin, glucagon, pancreatic polypeptide, and somatostatin. Moreover, IPCs released insulin in response to normal glucose challenge. Here we demonstrate that the treatment of RPE can differentiate rat mesenchymal cells into IPCs which can be a potential source for the therapy of diabetes.  相似文献   

17.
18.
Recently, it has been reported that islet transplantation into patients with Type 1 diabetes may achieve insulin independence for a year or longer [Shapiro et al., Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen, N Engl J Med. 343 (2000) 230-238]. However, the amount of donor islet tissue is limited, therefore, multiple approaches are being explored to generate insulin-producing cells in vitro. Some promising results have been obtained using mouse and human stem cells and progenitor cells [Soria et al., From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus, Diabetologia. 4 (2001) 407-415; Lechner et al., Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus, Am J Physiol Endocrinol Metab. 284 (2003) 259-266; Bonner-Weir et al., In vitro cultivation of human islets from expanded ductal tissue, Proc Natl Acad Sci U S A, 97 (2000) 7999-8004; Assady et al., Insulin production by human embryonic stem cells, 50 (2001) Diabetes 1691-1697]. However, the efficiency of obtaining populations with high numbers of differentiated cells has been poor. In order to improve the efficiency of producing and selecting insulin-producing cells from undifferentiated cells, we have designed a novel beta-cell specific and glucose responsive promoter system designated pGL3.hINS-363 3x. This artificial promoter system exhibits significant luciferase activity not only in insulin-producing MIN6 m9 cells but also in isolated human islets. The pGL3.hINS-363 3x construct shows no activity in non-insulin-producing cells in low glucose conditions (2 mM glucose) but demonstrates significant activity and beta-cell specificity in high glucose conditions (16 mM glucose). Furthermore, pGL3.hINS-363 3x shows significant promoter activity in differentiated AR42J cells that can produce insulin after activin A and betacellulin treatment. Here, we describe a novel beta-cell specific and glucose responsive artificial promoter system designed for analyzing and sorting beta-like insulin-producing cells that have differentiated from stem cells or other progenitor cells.  相似文献   

19.
In view of the recent success in pancreatic islet transplantation, interest in treating diabetes by the delivery of insulin-producing beta-cells has been renewed. Because differentiated pancreatic beta-cells cannot be expanded significantly in vitro, beta-cell stem or progenitor cells are seen as a potential source for the preparation of transplantable insulin-producing tissue. In addition to embryonic stem (ES) cells, several potential adult islet/beta-cell progenitors, derived from pancreas, liver, and bone marrow, are being studied. To date, none of the candidate cells has been fully characterized or is clinically applicable, but pancreatic physiology makes the existence of one or more types of adult islet stem cells very likely. It also seems possible that pluripotential stem cells, derived from the bone marrow, contribute to adult islet neogenesis. In future studies, more stringent criteria should be met to clonally define adult islet/beta-cell progenitor cells. If this can be achieved, the utilization of these cells for the generation of insulin-producing beta-cells in vitro seems to be feasible in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号