首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testicular tissue cryopreservation is the only potential option for fertility preservation in pre-pubertal boys exposed to gonadotoxic treatment. Completion of spermatogenesis after in vitro maturation is one of the future uses of harvested testicular tissue. The purpose of the current study was to evaluate the effects of vitamin A on in vitro maturation of fresh and frozen-thawed mouse pre-pubertal spermatogonial stem cells in an organ culture system. Pre-pubertal CD1 mouse fresh testes were cultured for 7 (D7), 9 (D9) and 11 (D11) days using an organ culture system. Basal medium was supplemented with different concentrations of retinol (Re) or retinoic acid (RA) alone or in combination. Seminiferous tubule morphology (tubule diameter, intra-tubular cell type), intra-tubular cell death and proliferation (PCNA antibody) and testosterone level were assessed at D7, D9 and D11. Pre-pubertal mouse testicular tissue were frozen after a soaking temperature performed at -7°C, -8°C or -9°C and after thawing, were cultured for 9 days, using the culture medium preserving the best fresh tissue functionality. Retinoic acid at 10-6M and retinol at 3.3.10-7M, as well as retinol 10-6M are favourable for seminiferous tubule growth, maintenance of intra-tubular cell proliferation and germ cell differentiation of fresh pre-pubertal mouse spermatogonia. Structural and functional integrity of frozen-thawed testicular tissue appeared to be well-preserved after soaking temperature at -8°C, after 9 days of organotypic culture using 10-6M retinol. RA and Re can control in vitro germ cell proliferation and differentiation. Re at a concentration of 10-6M maintains intra-tubular cell proliferation and the ability of spermatogonia to initiate spermatogenesis in fresh and frozen pre-pubertal mouse testicular tissue using a soaking temperature at -8°C. Our data suggested a possible human application for in vitro maturation of cryopreserved pre-pubertal testicular tissue.  相似文献   

2.
When they are derived from blastodermal cells of the pre-primitive streak in vitro, the pluripotency of Chicken Embryonic Stem Cells (cESC) can be controlled by the cPouV and Nanog genes. These cESC can differentiate into derivatives of the three germ layers both in vitro and in vivo, but they only weakly colonize the gonads of host embryos. By contrast, non-cultured blastodermal cells and long-term cultured chicken primordial germ cells maintain full germline competence. This restriction in the germline potential of the cESC may result from either early germline determination in the donor embryos or it may occur as a result of in vitro culture. We are interested in understanding the genetic determinants of germline programming. The RNA binding protein Cvh (Chicken Vasa Homologue) is considered as one such determinant, although its role in germ cell physiology is still unclear. Here we show that the exogenous expression of Cvh, combined with appropriate culture conditions, induces cESC reprogramming towards a germ cell fate. Indeed, these cells express the Dazl, Tudor and Sycp3 germline markers, and they display improved germline colonization and adopt a germ cell fate when injected into recipient embryos. Thus, our results demonstrate that Vasa can drive ES cell differentiation towards the germ cell lineage, both in vitro and in vivo.  相似文献   

3.
Spermatogonial stem cells (SSCs) are exceptional adult stem cells that transfer genes to new generations. This behavior makes them unique cells for the production of transgenic farm animals. However, this goal has been hampered by their spontaneous differentiation during in vitro culture. Therefore, the objective of this study was the evaluation of the effects of different feeders on in vitro short-term culture of prepubertal bovine testicular germ cells. The isolated cell suspensions containing SSCs were enriched by Bovine serum albumin (BSA) and gelatin and were cultured in the presence of Glial-derived neurotrophic factor (GDNF), Epidermal Growth Factor (EGF) and basic Fibroblastic Growth Factor (bFGF). After 7 d of culture, colonies were harvested and cultured on four different feeders, including SIM mouse embryo-derived thioguanine and ouabain resistant (STO), mouse embryonic fibroblast, bovine Sertoli cells (BSC) and on a laminin-coated plate. The number and area of colonies were measured at seven, 11 and 14 d post-culture. The expression of germ cells markers was detected using immunofluorescence and flow cytometry analyses on day 7, and quantitative real-time PCR at 14 d post-culture. Immunocytochemical staining revealed that colonies were positive for Dolichos biflorus agglutinin (DBA), Thy-1, Oct-4, c-ret, α6-integrin, β1-integrin and negative for c-kit. In addition, the number and area of those colonies formed on the STO feeder were significantly greater than the other groups. Relative expressions of Thy-1 in the STO and in BSC groups were significantly higher than other groups but expression of Oct-4 was highest in the laminin group compared to other groups. In conclusion, STO might be a suitable feeder layer for in vitro propagation of bovine testicular germ cells.  相似文献   

4.
This investigation was performed to evaluate the differentiation capacity and alteration in genes expression patterns during in vitro differentiation of bone marrow stem cells into primordial germ cells using static magnetic field (4 mT) and BMP-4 (25 ng/ml). The rate of differentiation was investigated using the Real Time-PCR method for tracing expression of differentiation markers (Oct-4, Nanog, C-Myc, Fragilis, Mvh and Stella). Then, immunocytochemical reaction was carried out for detection of marker proteins (Oct4 and Mvh). Increasing of the exposure time of the 4 mT SMF (24 and 48 h) and treatment time with 25 ng/ml BMP4 (48 and 96 h) indicated a marked decrease in expression of pluripotency genes (Oct-4, Nanog and C-Myc) and Oct4 protein and increase in primordial germ cell-specific genes (Fragilis, Mvh and Stella) and Mvh protein compared with the control group. Final results showed that in a synergistic manner, the combination of SMF with BMP4 exaggerates the differentiation potential of BMSCs to PGCs by activating the MAPK pathway and altering the Ca2+ concentration.  相似文献   

5.
A convenient method for fetal murine premeiotic germ cells to develop into oocytes in vitro has been established. Fetal ovaries from mice, collected 12.5 d postcoitus (dpc), were organ-cultured in vitro using a medium for organ growth, and the developmental potential regarding oocyte formation was determined. After 28 d of culture, premeiotic female germ cells developed into oocytes with a mean (±SD) diameter of 73.3 ± 7.7 μm. However, follicles developed in vitro versus in vivo had fewer granulosa cells (32 ± 2.6 vs. 142 ± 9.5, respectively; P < 0.01), and the ovaries had less mRNA for Cx37 and Cx43 (P < 0.01). Oocytes in the first meiotic division phase were isolated from cultured ovaries or after hormone treatments. After exposure to okadaic acid at a final concentration of 1 μM, oocytes derived from premeiotic fetal female germ cells were able to undergo germinal vesicle breakdown but failed to complete the first meiotic division. Furthermore, the intracellular content of GSH in oocytes cultured in vitro was lower than that of oocytes matured in vivo (P < 0.01). In conclusion, premeiotic germ cells derived from murine fetuses as early as 12.5 dpc were able to differentiate into germinal vesicle-stage oocytes but were unable to complete meiosis I in vitro.  相似文献   

6.
The aims of this study were (1) to determine the effect of in vitro maturation (IVM) medium supplementation with MEM vitamins on in vitro embryo development and sensitivity to vitrification of Day 6 blastocysts and (2) to evaluate whether the addition of forskolin to in vitro culture (IVC) medium enhances blastocyst survival following Super Open Pulled Straw (SOPS) vitrification. Cumulus–oocyte complexes (COCs; n = 4000) were matured with 0.0% or 0.05% (v/v) MEM vitamins. After 44 h of IVM, the oocytes were in vitro fertilized, and presumptive zygotes were cultured. At Day 5 of IVC, embryos from both experimental groups were cultured for 24 h with 0 or 10 μM forskolin, achieving a 2 × 2 factorial design. The blastocyst formation rate was assessed on Day 6, and subsets of samples from the four experimental groups were vitrified (n = 469) or kept fresh (n = 546). Fresh and vitrified-warmed blastocysts were cultured for 24 h prior to embryo survival and total blastocyst cell number assessment. The MEM vitamins increased (P < 0.001) the blastocyst formation rate at Day 6, but they did not affect embryo survival after vitrification. In contrast, the addition of forskolin to the culture medium enhanced (P < 0.05) the blastocyst vitrification tolerance. The total blastocyst cell number was similar among the groups. In conclusion, supplementation with 0.05% MEM vitamins improved the blastocyst formation rate, and the addition of 10 μM forskolin to the culture medium increased survival in Day 6 in vitro-produced blastocysts after SOPS vitrification.  相似文献   

7.
8.
9.
Optimization of in vitro culture system for the expansion and the maturation of male germ cells to post meiotic stages is a valuable tool for studies exploring spermatogenesis regulation and the management of male infertility. Several studies have reported promising results of mouse spermatogonial stem cells culture in three-dimensional (3D) culture systems and a subsequent production of sperm. In the present study, we investigated the capacity of a three-dimensional soft agar culture system (SACS) supplemented with Knockout Serum Replacement (KSR) in colony formation and inducing human germ cells to reach post-meiotic stages. Testicular cells from testes of brain -dead donors were first cultured for three weeks in proliferation medium. The cells were subsequently cultured in the upper layer of the SACS (3D group) in a medium supplemented with KSR and hormones, and the results were compared with that of a two-dimensional (2D) culture system. We found that the number and diameter of colonies and the levels of expression of Scp3 and Integrin α6 in the 3D culture group were significantly higher than in the 2D group. Our findings indicate that SACS can reconstruct a microenvironment capable of regulating both proliferation and differentiation of cell colonies.  相似文献   

10.

Background

Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro.

Methods and Findings

To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene.

Conclusion

VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates.  相似文献   

11.
The propagation of adult conifer trees by tissue culture has been studied for the last twenty years, but problems related to the juvenile to adult phase change of trees have limited the practical applications of these tissue culture procedures. This paper describes a micropropagation protocol for the in vitro propagation of mature Scots pine trees. In this study, dormant shoot buds, which had not started to elongate, were collected from twenty-one adult Pinus sylvestris trees (> 15 years old) during the winter. The sampled buds were cut transversely into slices of 0.5 to 1 cm in thickness and were cultured on three types of culture media (DCR, WP and LPm) supplemented with four cytokinins (BA, mT, Tdz and Z), at two different concentrations (25 and 50 µM), except for Tdz, whose concentrations were diluted to 5 µM and 2.5 µM. The evaluated culture media did not show significant differences in the bud organogenesis capacity. In fact, the highest organogenic response was obtained with buds cultured on DCR and WP media and by explants cultured on medium supplemented with 25 µM meta-topolin. This protocol is a successful and efficient biotechnological approach to the micropropagation of adult P. sylvestris trees.  相似文献   

12.
Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA + βG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA + βG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and βG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular.  相似文献   

13.
Clonal cultures are essential for the genotypic and phenotypic characterization of Perkinsus species but their cloning, especially of P. marinus, can be tedious. The use of a growth factor and hormone supplement to facilitate cloning was, therefore, investigated. Many of the 16 supplements tested significantly increased P. marinus and P. olseni proliferation but only two significantly increased P. chesapeaki proliferation. The concentration of the most effective supplement for all three Perkinsus species (i.e., endothelial cell growth supplement, ECGS) and medium dilution were then optimized for P. marinus cultured at low densities. Finally, the advantage of using conditioned culture medium, a feeder layer, and ECGS alone and in different combinations to improve cloning of P. marinus were compared. Using conditioned culture medium, a feeder layer and ECGS in combination, each cell (N = 7) seeded singly yielded clonal cultures with 253 ± 167 cells after 21 days. In contrast, only 4 out of 7 cells seeded singly in culture medium yielded clonal cultures with 5 ± 4 cells after 21 days.  相似文献   

14.
Cryopreservation has become an integral component of any cell transplantation technique helping to overcome the issues associated with known spatial and temporal barriers between donor and recipient. The aim of this study was to develop a protocol for large quantity cryopreservation of bovine testicular germ cells. The impact of 3 different packaging methods (5 ml semen straw, 20 ml freezing bag and 1.5 ml cryovial) and varying cell densities (3 × 106, 9 × 106, or 18 × 106 cells/ml) on the survival of testis germ cells was examined. Cells processed in 5 ml semen straws had a significantly higher viability (70.7 ± 1.2%, P < 0.05) compared to those cells in 20 ml freezing bags (46.7 ± 0.1%) or 1.5 ml cryovials (46.3 ± 2.2%). For 5 ml straws, a 20 min cooling prior to cryopreservation resulted in a higher post thaw viability (73.2 ± 0.6%) than a 10 min cooling (56.0 ± 2.2%), while the density of the cell suspension did not impact on post thaw viability. Thus cryopreservation of testicular germ cells in 5 ml straws at a density between 3 × 106 and 18 × 106 cells/ml in liquid nitrogen vapour for 20 min cooling appears to be a simple and practical way to preserve cells. Subsequent testing of frozen/thawed cells exhibited viable cultures and retained the ability to proliferate. The freezing protocol does not preferentially preserve type A spermatogonia. However, the cell surface properties of somatic cells appear to be affected by the freezing procedure and therefore the frozen/thawed cells are less suitable for enriching type A spermatogonia by differential plating.  相似文献   

15.
We report the first use of exemestane (EM), a steroidal aromatase inhibitor (AI) commercially known as aromasin, in studies of sex differentiation in fish. The effectiveness of EM was examined in two different age groups of the gonochoristic fish, Nile tilapia (Oreochromis niloticus). Untreated control fish (all female) showed normal ovarian differentiation through 120 days after hatching (dah), whereas fish treated with EM at 1000 and 2000 µg/g of feed from 9 dah through 35 dah, the critical period for sex differentiation, exhibited complete testicular differentiation; all stages of spermatogenic germ cells were evident and well developed efferent ducts were present. Fish treated with EM at 1000 µg/g of feed from 70 dah through 100 dah significantly suppressed plasma estradiol-17β level and increased level of 11-ketotestosterone. Furthermore, untreated control fish showed strong gonadal expression of the steroidogenic enzymes P450 cholesterol-side chain-cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and cytochrome P450 aromatase (P450arom). In contrast, EM-treated fish showed immunopositive reactions against P450scc and 3β-HSD but not against P450arom in interstitial Leydig cells. These results indicate that treatment of tilapia juveniles with EM during sex differentiation leads to the development of testes, apparently by a complete suppression of aromatase activity.  相似文献   

16.
The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.  相似文献   

17.
A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils.  相似文献   

18.
Spartium junceum L. (Leguminosae) is a perennial shrub, native to the Mediterranean region in southern Europe, widespread in all the Italian regions and, as a leguminous species, it has a high isoflavone content. An in vitro culture protocol was developed for this species starting from stem nodal sections of in vivo plants, and isoflavone components of the in vitro cultured tissues were studied by means of High Performance Liquid Chromatography (HPLC) analytical techniques. Two main isoflavones were detected in the S. junceum tissues during the in vitro propagation phases: Genistein (4′,5,7-Trihydroxyisoflavone), already reported in this species, and its methylated form 4′,5,7-Trimethoxyisoflavone, detected for the first time in this plant species (0.750 ± 0.02 mg g−1 dry tissue). The presence of both of these compounds in S. junceum tissues was consistently detected during the in vitro multiplication phase. The absence of the methylated form within plant tissues in the early phases of the in vitro adventitious root formation was correlated with its negative effect displayed on root induction and initiation phases, while its presence in the final “root manifestation” phase influenced positively the rooting process. The unmethylated form, although detectable in tissues in the precocious rooting phases, was no longer present in the final rooting phase. Its effect on rooting, however, proved always to be beneficial.  相似文献   

19.
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6–8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10−7 mol l−1 of RA effectively induced the SSCs into haploid male germ cells in vitro.  相似文献   

20.
Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost- effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号