首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I M Russu  S S Wu  N T Ho  G W Kellogg  C Ho 《Biochemistry》1989,28(12):5298-5306
High-resolution proton nuclear magnetic resonance spectroscopy has been used to investigate the molecular mechanism of the Bohr effect of human normal adult hemoglobin in the presence of two allosteric effectors, i.e., chloride and inorganic phosphate ions. The individual hydrogen ion equilibria of 22-26 histidyl residues of hemoglobin have been measured in anion-free 0.1 M HEPES buffer and in the presence of 0.18 M chloride or 0.1 M inorganic phosphate ions in both deoxy and carbonmonoxy forms. The results indicate that the beta 2-histidyl residues are strong binding sites for chloride and inorganic phosphate ions in hemoglobin. The affinity of the beta 2-histidyl residues for these anions is larger in the deoxy than in the carbonmonoxy form. Nevertheless, the contribution of these histidyl residues to the anion Bohr effect is small due to their low pK value in deoxyhemoglobin in anion-free solvents. The interactions of chloride and inorganic phosphate ions with the hemoglobin molecule also result in lower pK values and/or changes in the shapes of the hydrogen ion binding curves for several other surface histidyl residues. These results suggest that long-range electrostatic interactions between individual ionizable sites in hemoglobin could play an important role in the molecular mechanism of the anion Bohr effect.  相似文献   

2.
Effects of anions on the molecular basis of the Bohr effect of hemoglobin   总被引:1,自引:0,他引:1  
High-resolution 1H-NMR spectroscopy has been used to investigate the molecular basis of the Bohr effect in human normal adult hemoglobin in the presence of anions which serve as heterotropic effectors, i.e., Cl-, Pi, and 2,3-diphosphoglycerate. The individual H+ equilibria of 22-26 histidyl residues of hemoglobin in both deoxy and carbonmonoxy forms have been measured under buffer conditions chosen to demonstrate the effects of anion binding. The results indicate that beta 2His residues are binding sites for Cl- and Pi in both deoxy and carbonmonoxy forms, and that the affinity of this site for these anions is greater in the deoxy form. Recently assigned, the resonance of beta 146His does not show evidence of involvement in anion binding. The results also indicate that the binding of 2,3-diphosphoglycerate at the central cavity between the two beta-chains in deoxyhemoglobin involves the beta 2His residues, and that the 2,3-diphosphoglycerate-binding site in carbonmonoxyhemoglobin may remain similar to that in deoxyhemoglobin. The interactions of Cl-, Pi and 2,3-diphosphoglycerate also result in changes in the pK values for other surface histidyl residues which vary in both magnitude and direction. The array of pK changes is specific for the interaction of each effector. The participation of beta 2His in the Bohr effect demonstrates that this residue can release or capture protons, depending on its protonation properties and its linkage to anion binding, and therefore provides an excellent illustration of the variable roles of a given amino acid. Although beta 146His does not bind anions, its contributions to the Bohr effect are substantially affected by the presence of anions. These results demonstrate that long-range electrostatic and/or conformational effects of anions binding play significant roles in the molecular basis of the Bohr effect of hemoglobin.  相似文献   

3.
Oxygen-linked effects of inositol hexaphosphate occur in heme-containing non-alpha chains isolated from normal human hemoglobin, fetal hemoglobin, and the abnormal human hemoglobin Abruzzo, beta143(H21) His leads to Arg. The occurrence of these effects implies that the chains undergo ligand-linked conformational changes. Inositol hexaphosphate lowers the oxygen affinity of isolated beta and gamma chains by differential binding to their deoxy conformations. Neither 2,3-diphosphoglycerate nor inorganic phosphate produces such an effect. In the case of Abruzzo beta chains, the binding of inorganic phosphate and 2,3-diphosphoglycerate is also oxygen-linked. Stripped beta chains isolated from hemoglobin Abruzzo have much higher oxygen affinity than beta chains isolated from HbA. Their higher oxygen affinity and enhanced allosteric interactions with phosphates account, in large part, for the abnormal functional behavior of the hemoglobin Abruzzo tetramer. In this hemoglobin variant the substitution of arginine for histidine at beta143 involves a residue known to interact with anionic allosteric effectors of hemoglobin. It is of interest that the effect of inositol hexaphosphate observed with isolated gamma chains is comparable to the effect observed with isolated beta chains, even though the gamma143 position is occupied by an uncharged serine residue.  相似文献   

4.
An allosteric modulator of oxygen release in human erythrocytes is 2,3-diphosphoglycerate, but bovine erythrocytes apparently utilize chloride for this purpose since they contain little, if any, 2,3-diphosphoglycerate. In order to identify the sites to which these anions bind, the site-specific acetylating agent, methyl acetyl phosphate, has been employed to compete with these allosteric modulators and to mimic their effects on hemoglobin function. With human hemoglobin A, methyl acetyl phosphate competes with 2,3-diphosphoglycerate and acetylates only Val-1(beta), Lys-82(beta), and Lys-144(beta) within or near the cleft that binds this organic phosphate (Ueno, H., Pospischil, M. A., Manning, J. M., and Kluger, R. (1986) Arch Biochem. Biophys. 244, 795). With bovine hemoglobin, the acetylation is competitive with chloride ion. The sites of acetylation in oxy bovine hemoglobin are Met-1(beta) and Lys-81(beta) and for deoxy bovine hemoglobin, they are Val-1(alpha) and Lys-81(beta). Thus, these sites are expected to be involved in the binding of chloride to bovine hemoglobin. Treatment of either human or bovine hemoglobins with methyl acetyl phosphate under anaerobic conditions leads to a lowering of their oxygen affinity and hence the covalent modifier has the same effect on hemoglobin function as the non-covalent regulators, 2,3-diphosphoglycerate and chloride. The Hill's coefficient of hemoglobin is unaffected by treatment with methyl acetyl phosphate. Under aerobic conditions, specifically acetylated bovine hemoglobin also has a lowered oxygen affinity, and human hemoglobin A shows a slight change in its oxygen affinity. In general, bovine hemoglobin is more responsive than human hemoglobin to both chloride and methyl acetyl phosphate; the latter agent results in a permanent covalent labeling of the protein. Therefore, the results support the idea that methyl acetyl phosphate may be a useful probe for deciphering the sites of binding of anions to proteins.  相似文献   

5.
I M Russu  N T Ho  C Ho 《Biochemistry》1982,21(20):5031-5043
High-resolution proton nuclear magnetic resonance (NMR) spectroscopy at 250 MHz has been used to titrate 22 individual surface histidyl residues (11 per alpha beta dimer) of human normal adult hemoglobin in both the deoxy and the carbon monoxy forms. The proton resonances of beta 2, beta 143, and beta 146 histidyl residues are assigned by a parallel 1H NMR titration of appropriate mutant and chemically modified hemoglobins. The pK values of the 22 histidyl residues investigated are found to range from 6.35 to 8.07 in the deoxy form and from 6.20 to 7.87 in the carbon monoxy form, in the presence of 0.1 M Bis-Tris or 0.1 M Tris buffer in D2O with chloride ion concentrations varying from 5 to 60 mM at 27 degrees C. Four histidyl residues in the deoxy form and one histidyl residue in the carbon monoxy form are found to have proton nuclear magnetic resonance titration curves that deviate greatly from that predicted by the simple proton dissociation equilibrium of a single ionizable group. The proton nuclear magnetic resonance data are used to ascertain the role of several surface histidyl residues in the Bohr effect of hemoglobin under the above-mentioned experimental conditions. Under these experimental conditions, we have found that (i) the beta 146 histidyl residues do not change their electrostatic environments significantly upon binding of ligand to deoxyhemoglobin and, thus, their contribution to the Bohr effect is negligible, (ii) the beta 2 histidyl residues have a negative contribution to the Bohr effect, and (iii) the total contribution of the 22 histidyl residues investigated here to the Bohr effect is, in magnitude, comparable to the Bohr effect observed experimentally. These results suggest that the molecular mechanism of the Bohr effect proposed by Perutz [Perutz, M.F. (1970) Nature (London) 228, 726-739] is not unique and that the detailed mechanism depends on experimental conditions, such as the solvent composition.  相似文献   

6.
T Y Fang  M Zou  V Simplaceanu  N T Ho  C Ho 《Biochemistry》1999,38(40):13423-13432
Site-directed mutagenesis has been used to construct two mutant recombinant hemoglobins (rHbs), rHb(betaH116Q) and rHb(betaH143S). Purified rHbs were used to assign the C2 proton resonances of beta116His and beta143His and to resolve the ambiguous assignments made over the past years. In the present work, we have identified the C2 proton resonances of two surface histidyl residues of the beta chain, beta116His and beta143His, in both the carbonmonoxy and deoxy forms, by comparing the proton nuclear magnetic resonance (NMR) spectra of human normal adult hemoglobin (Hb A) with those of rHbs. Current assignments plus other previous assignments complete the assignments for all 24 surface histidyl residues of human normal adult hemoglobin. The individual pK values of 24 histidyl residues of Hb A were also measured in deuterium oxide (D(2)O) in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer in the presence of 0.1 M chloride at 29 degrees C by monitoring the shifts of the C2 proton resonances of the histidyl residues as a function of pH. Among those surface histidyl residues, beta146His has the biggest contribution to the alkaline Bohr effect (63% at pH 7.4), and beta143His has the biggest contribution to the acid Bohr effect (71% at pH 5.1). alpha20His, alpha112His, and beta117His have essentially no contribution; alpha50His, alpha72His, alpha89His, beta97His, and beta116His have moderate positive contributions; and beta2His and beta77His have a moderate negative contribution to the Bohr effect. The sum of the contributions from 24 surface histidyl residues accounted for 86% of the alkaline Bohr effect at pH 7.4 and about 55% of the acid Bohr effect at pH 5.1. Although beta143His is located in the binding site for 2,3-bisphosphoglycerate (2,3-BPG) according to the crystal structure of deoxy-Hb A complexed with 2, 3-BPG, beta143His is not essential for the binding of 2,3-BPG in the neutral pH range according to the proton NMR and oxygen affinity studies presented here. With the accurately measured and assigned individual pK values for all surface histidyl residues, it is now possible to evaluate the Bohr effect microscopically for novel recombinant Hbs with important functional properties, such as low oxygen affinity and high cooperativity. The present study further confirms the importance of a global electrostatic network in regulating the Bohr effect of the hemoglobin molecule.  相似文献   

7.
The principal component of normal adult human hemoglobin was equilibrated under various conditions with 13CO2. Quantitative analysis of the carbamino resonance intensities over the pH range of 6.5 to 9.0 shows that the effects of conversion from the deoxy to the liganded state in reducing the carbamino adduct formation occur predominantly at Val-1beta. Analysis of the pH dependence of carbamino formation at constant total carbonates yields values of pKz and pKc for Val-1beta and Val-1alpha in the deoxy and liganded conditions. In contrast to the Val-1beta as the allosteric site for CO2, the Val-1alpha site is shown to be primarily an alkaline Bohr group. 2,3-Diphosphoglycerate is shown to reduce substantially the Val-1beta carbamino resonance intensity in deoxyhemoglobin. Evidence for 2,3-diphosphoglycerate effects in carbon monoxide hemoglobin at both Val-1alpha and Val-1beta sites is presented. Enhanced carbamino formation in carbon monoxide hemoglobin at Val-1beta is observed at pH values less than 7.8. Finally, chemical exchange analysis of the spectra shows the release rate of the deoxy Val-1alpha carbamino adduct to be greater than that for deoxy Val-1beta. At pH 7.47 k-1obs,beta congruent to 1.0 and k-1obs, alpha congruent to 11.0 s-1.  相似文献   

8.
Carbamylation of the NH2-terminal residues of the beta chains on hemoglobin (alpha2beta2c) leads to a reduced but still significant binding of 2,3-diphosphoglycerate, but has no effect on the oxygen-linked binding of chloride or phosphate, both of which are thought to bind to some of the same residues as the organic phosphate. Studies by others have shown that the binding of inorganic anions is not diminished in either horse hemoglobin or in hemoglobin Little Rock, in which four of the six other binding sites (histidine residues) for organic phosphates are replaced by glutamine residues. We suggest, therefore, that lysines 82 of the beta chains, which are the remaining 2 residues in the binding crevice for the organic phosphate, and which are invariant in the known sequences of mammalian hemoglobins, may be the primary binding site for inorganic anions. The extent of inhibition of gelation by increasing ionic strength is identical for the hybrids alpha2beta2, alpha2cbeta2, and alpha2beta2c of hemoglobin S. These results indicate the NH2-terminal residues of the chains are not involved in primary electrostatic interactions during aggregation of deoxyhemoglobin S.  相似文献   

9.
Spectrofluorometric techniques were used to quantify NADPH-hemoglobin interactions based on the quenching of NADPH fluorescence upon binding to hemoglobin. Fluorometric titrations were carried out with hemoglobin in varied states and with hemoglobins in which the beta-chain anion site is altered. At pH 6.5 in 0.05 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, NADPH binds with high affinity, Kd = 1.03 microM, to deoxy human hemoglobin tetramers. Lower affinity binding of NADPH occurs as the beta-chain anion-binding site is discharged by increasing the pH. Moreover, the cofactor binds in a 1:1 ratio to deoxy tetramers, inositol hexaphosphate binds competitively, and binding is decreased in hemoglobins whose structural alterations result in decreased effects of 2,3-diphosphoglycerate. The cofactor binds to oxidized (met) hemoglobin with an estimated Kd of 33.3 microM but has little or no affinity for the oxy form. These results indicate that NADPH binds at the beta-chain anion-binding site and can be considered as a fluorescent analog of 2,3-diphosphoglycerate. Fluorescence measurements gave no indication of NADPH binding to deoxygenated ferrous or ferric myoglobin. Reductive processes within the erythrocyte, such as reduction of met hemoglobin and hemoglobin-catalyzed enzymatic reactions, may be affected by the significant binding of the reduced cofactor to both deoxygenated and oxidized hemoglobin. Cofactor-hemoglobin interactions predict a shift in redox potential as red cells become oxygenated, which may account for unexplained oxygen-linked shifts in red cell metabolism.  相似文献   

10.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

11.
The crystal state binding of sodium dithionite to deoxyhemoglobin is reported. Dithionite has been used extensively to deoxygenate hemoglobin and myoglobin and there has been considerable interest among users of dithionite about its effect on protein structure and binding site(s). We have determined that dithionite binds to deoxygenated hemoglobin crystals at the interface of two molecules in the crystal lattice. Specific residues involved in hydrogen bonds or salt interactions with dithionite include His116 and His117 of the beta 2 subunit and Lys16 of the alpha 1 subunit of the adjacent hemoglobin molecule. No binding was observed at the symmetry related His116 and 117 beta 1 residues. We have shown that dithionite does not affect the native hemoglobin structure or the binding of several allosteric inhibitors to hemoglobin and can be used to mount T state crystals in the air.  相似文献   

12.
To investigate the mode of interactions between heme metal, bound oxygen and the distal residue at the E7 site, we have measured accurate oxygen equilibrium curves, oxygen binding relaxations following temperature-jump, and electron paramagnetic resonance spectra of natural and cobalt-substituted opossum hemoglobin, which has glutamine and histidine at the E7 site of the α chain and the β chain, respectively, and compared them with those of natural and cobalt-substituted human hemoglobin, which has histidine at the E7 site of both the α and β chains.Natural opossum hemoglobin has a lower oxygen affinity, slightly smaller and pH-dependent co-operativity, a somewhat greater Bohr effect, and a smaller effect of organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate on oxygen affinity as compared to natural human hemoglobin. Upon substitution of cobalt for iron, these oxygenation characteristics of opossum hemoglobin relative to those of human hemoglobin were preserved well. The behavior of the intrinsic oxygen association constants pertaining to the four oxygenation steps (i.e. the Adair constants) upon addition of the organic phosphates or pH changes indicates that the allosteric equilibrium in opossum hemoglobin is biased towards the T state as compared with that in human hemoglobin, and that the oxygen affinity of the R structure is lower for opossum hemoglobin than for human hemoglobin. The temperature-jump kinetic data indicate that the lower oxygen affinity of opossum cobalt-hemoglobin in comparison with that of human cobalt-hemoglobin can be ascribed to a decreased oxygen association rate constant. The electron paramagnetic resonance experiments on oxy and deoxy opossum and human cobalt-hemoglobins in buffered H2O and 2H2O, including their photolysed products at a low temperature, provided the following information. The cobaltous ion of the α subunits of deoxy opossum cobalt-hemoglobin is in an environment that is similar to that for cobaltous ions of deoxy human cobalt-hemoglobin in the T state. The hydrogen bond between the bound oxygen and the residue at E7, which has been shown to exist in oxy human cobalt-hemoglobin and oxy sperm whale cobalt-myoglobin, is absent or, at least, significantly altered in the α subunits of oxy opossum cobalt-hemoglobin, probably resulting in a lower oxygen affinity. Interference by isoleucine at E11α with an oxygen molecule is suggested as an explanation for the lowered affinity of opossum iron-hemoglobin. However, no straightforward structural explanation is available for the lower oxygen affinity of the R structure and the allosteric equilibrium biased towards the T state in opossum iron-hemoglobin.  相似文献   

13.
The crystal structure of a high oxygen affinity species of hemoglobin, bar-headed goose hemoglobin in deoxy form, has been determined to a resolution of 2.8 A. The R and R(free) factor of the model are 0.197 and 0.243, respectively. The structure reported here is a special deoxy state of hemoglobin and indicates the differences in allosteric mechanisms between the goose and human hemoglobins. The quaternary structure of the goose deoxy hemoglobin shows obvious differences from that of human deoxy hemoglobin. The rotation angle of one alphabeta dimer relative to its partner in a tetramer molecule from the goose oxy to deoxy hemoglobin is only 4.6 degrees, and the translation is only 0.3 A, which are much smaller than those in human hemoglobin. In the alpha(1)beta(2) switch region of the goose deoxy hemoglobin, the imidazole ring of His beta(2)97 does not span the side-chain of Thr alpha(1)41 relative to the oxy hemoglobin as in human hemoglobin. And the tertiary structure changes of heme pocket and FG corner are also smaller than that in human hemoglobin. A unique mutation among avian and mammalian Hbs of alpha119 from proline to alanine at the alpha(1)beta(1 )interface in bar-headed goose hemoglobin brings a gap between Ala alpha119 and Leu beta55, the minimum distance between the two residues is 4.66 A. At the entrance to the central cavity around the molecular dyad, some residues of two beta chains form a positively charged groove where the inositol pentaphosphate binds to the hemoglobin. The His beta146 is at the inositol pentaphosphate binding site and the salt-bridge between His beta146 and Asp beta94 does not exist in the deoxy hemoglobin, which brings the weak chloride-independent Bohr effect to bar-headed goose hemoglobin.  相似文献   

14.
The glutamyl residue at G3(101)beta of normal hemoglobin (Hb A) is one of the alpha 1 beta 2 subunit contacts which are vital to O2 binding properties of the molecule. The O2 equilibrium properties of the four mutants with different substitutions at this site are studied in order to elucidate the role of this residue. Under stripped conditions with minimum chloride the order of O2 affinity is: Hb A (Glu) much less than Hb Rush (Gln) less than or equal to Hb British Columbia (Lys) less than or equal to Hb Potomac (Asp) less than or equal to Hb Alberta (Gly). The first Adair constants, K1, for the mutant hemoglobins are greater than that for Hb A whereas the fourth, K4, are similar, indicating that the allosteric constants (L) of these mutants are greatly reduced. Therefore, the G3(101)beta residue contributes intrinsically to the strengthening of the structural constraints that are imposed upon the deoxy (T) forms but not the oxy (R) form. On addition of 0.1 M Cl- and further addition of 2,3-diphosphoglycerate or inositol hexaphosphate, their O2 affinities and cooperativities are altered, reflecting different responses to anionic ligands. Hb Rush exhibits a stronger chloride effect than Hb A and the other variants and, as a result, an increased Bohr effect and a smaller heat of oxygenation at pH 6.5. These changes are consistent with an increased positive net charge in the central cavity of Hb Rush and subsequent extra anion binding in the deoxy form. The tetramer to dimer dissociation constants are estimated to be greater than normal for Hb British Columbia and less than normal for Hb Alberta. This comparative study of the G3(101)beta mutants indicates that the size and the charge of this residue may influence the switching of two neighboring interchain hydrogen bonds that occurs during oxygenation of normal hemoglobin.  相似文献   

15.
Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the alkaline Bohr effect, does not reform to Asp94 beta or to any other salt link acceptor in a stable way in oxy hemoglobin at low or high salt conditions.  相似文献   

16.
A mechanism for indirect allosteric action of charged effectors on substrate binding to a macromolecule is proposed. It is accounted for by electrostatic interaction among effectors in the solution, away from their receptors. The possibility of the mechanism proposed is tested in the allosteric action of univalent salt and 2,3-diphosphoglycerate on oxygen binding to hemoglobin. A model for electrostatic interaction between these two effectors in the solution and for their overall effect on oxygen binding is introduced. The 2,3-diphosphoglycerate binding constant to deoxygenated hemoglobin as a function of univalent salt concentration and the median ligand activity as a function of the concentration of univalent salt and 2,3-diphoshoglycerate are calculated and compared with experimental data. The obtained results indicate that electrostatic interaction in the solution may significantly contribute to indirect allosteric action of charged effectors. Partly presented at the “11th FEBS Meeting” in Copenhagen, August 1977  相似文献   

17.
ESR spectra of the carbonmonoxy, oxy, and deoxy derivatives of hemoglobin Izu [Hb Izu (Macaca): beta 83 (EF 7) Gly leads to Cys] labeled at cysteine beta 83 with maleimide spin label have been observed in the presence and absence of 2,3-diphosphoglycerate and inositol hexaphosphate. The tau c values obtained from the spectra indicated that inositol hexaphosphate binds to all the derivatives of Hb Izu, but 2,3-diphosphoglycerate only to the deoxy derivatives.  相似文献   

18.
In hemoglobin (Hb) Thionville, the substitution of a glutamic acid for the alpha-chain NH2-terminal valine inhibits the cleavage of the initiator methionine which is then acetylated. The elongation of the alpha-chain NH2 terminus modifies the three-dimensional structure of hemoglobin at a region that is known to have an important role in the allosteric regulation of oxygen binding. Relative to Hb A, Hb Thionville has a lower affinity for oxygen, and the heterotropic allosteric effects of protons, chloride, and bezafibrate are reduced. In contrast, the response to 2,3-diphosphoglycerate is normal. Analysis of oxygen equilibrium data within the framework of the two-state allosteric model indicates that the structure of deoxy Hb Thionville is stabilized relative to that of deoxy Hb A. The x-ray crystal structure of deoxy Hb Thionville shows that the glutamate side chain extends away from the alpha 1-alpha 2 interface, whereas the methionine side chain (which has two conformations) extends into the alpha 1-alpha 2 interface, physically displacing chloride and bezafibrate. The increased stability of deoxy Hb Thionville is due to new intrasubunit and intersubunit contacts made by the methionine. These interactions replace the indirect contacts, made through bound chloride ions, that Val-1 alpha normally contributes to the alpha 1-alpha 2 interface.  相似文献   

19.
Ferrate ion, a phosphate analog and a potent oxidizing agent, is known to inactivate a number of enzymes which interact with phosphoryl compounds. In contrast, enzymes which do not interact with phosphoryl compounds are not affected by comparable concentrations of ferrate. To further explore the specificity of ferrate as a reagent which is specific for phosphoryl binding sites, a study of its effect on human hemoglobin A was undertaken. In the deoxy form, this protein is known to interact with 2,3-bisphosphoglycerate, its natural allosteric inhibitor of cooperative binding of oxygen, while as oxyhemoglobin it does not interact with the inhibitor. Treatment with ferrate ion caused the loss of approximately three amino acid residues per beta chain of human deoxyhemoglobin, His-2, His-143, and Tyr-145, and one residue, presumably Tyr-42, per alpha chain. Oxyhemoglobin was not affected by the reagent. 2,3-Bisphosphoglycerate was found to protect deoxyhemoglobin from the action of ferrate. His-2 and His-143 are among the residues reported to be implicated in the binding of 2,3-bisphosphoglycerate by deoxyhemoglobin [A. Arnone (1972) Nature (London) 237, 146-148].  相似文献   

20.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号