首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

2.
Basic fibroblast growth factor (FGF) has no effect alone on the basal cAMP synthesis in Chinese hamster fibroblasts (CCL39) but it potentiates (by up to 50%) the stimulation of adenylate cyclase by prostaglandin E1, cholera toxin or forskolin. This potentiating effect is not abolished by pretreatment of the cells with pertussis toxin, which indicates that it is not due to the withdrawal of a tonic inhibition of adenylate cyclase by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi). Therefore, we conclude that FGF enhances the activation of adenylate cyclase by the stimulatory GTP-binding protein (Gs). Although activation of protein kinase C in CCL39 cells results in a similar potentiation of cAMP production, we provide evidence that the effect of FGF is not mediated by protein kinase C, since (1) the potentiating effects of FGF and phorbol esters are additive and (2) FGF effect persists after down-regulation of protein kinase C. A role of FGF-induced rise in cytoplasmic Ca2+ can also be ruled out because the FGF effect is not mimicked by a Ca2+ ionophore and it persists in Ca2(+)-free medium. Since a similar potentiating effect on cAMP production is elicited by epidermal growth factor, a mitogen known to activate a receptor tyrosine kinase, we suggest that the FGF effect on adenylate cyclase might be mediated by the tyrosine kinase activity that is very likely to be associated with FGF receptors.  相似文献   

3.
Activation of adipocyte adenylate cyclase by protein kinase C   总被引:5,自引:0,他引:5  
Adenylate cyclase activity in purified rat adipocyte membranes is stimulated by the calcium- and phospholipid-dependent enzyme protein kinase C. Over the concentration range of 100-1000 milliunits/ml, both highly purified (approximately 3000 units/mg of protein) protein kinase C from rat brain and partially purified (14 units/mg of protein) protein kinase C from guinea pig pancreas stimulate cyclase activity. The actions of both protein kinase C preparations on adenylate cyclase activity are dependent on added calcium, which is effective at concentrations less than 10 microM. Exogenous phospholipids are not required for stimulation of adenylate cyclase by protein kinase C; but, under typical cyclase assay conditions, the adipocyte membranes satisfy the lipid requirement for protein kinase C phosphorylation of histone. The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate enhances the kinase action on cyclase, and the phorbol ester is effective at concentrations equimolar with the kinase (less than 10 nM). With the brain protein kinase C, 12-O-tetradecanoylphorbol-13-acetate effects are especially evident at limiting calcium concentrations. Inhibitors of protein kinase C activity, such as chlorpromazine, palmitoylcarnitine, and polymyxin B, inhibit selectively that adenylate cyclase activity which is stimulated by protein kinase C plus calcium. It is concluded that protein kinase C acts directly on the adipocyte adenylate cyclase system.  相似文献   

4.
Treatment of HT29 cells with the tumor promoting phorbol ester PMA resulted in an attenuation of VIP-stimulated cAMP production in intact cells and VIP-stimulated adenylate cyclase activity in cell membranes. PMA did not decrease the ability of cholera toxin and forskolin to elevate cAMP levels in intact cells. Fluoride-stimulated adenylate cyclase activity in HT29 cells homogenates was not affected by PMA. The maximal VIP binding capacity of homogenates prepared from HT29 cells treated with PMA was decreased by 50%. It is concluded that protein kinase C regulates VIP receptor function possibly through phosphorylation of the VIP receptor.  相似文献   

5.
We reported in anterior pituitary cells that hormone stimulation of cyclic AMP levels is amplified by agents that activate protein kinase C (e.g., phorbol esters). We utilized the 235-1 pituitary cell line to explore the mechanism of this response. PGE1- and forskolin-stimulated cyclic AMP accumulation and adenylate cyclase activity are enhanced by exposing viable cells to phorbol esters. Adenylate cyclase activity in the presence of PGE1 demonstrated a biphasic stimulatory, then inhibitory response to increasing GTP concentrations; phorbol esters attenuated this inhibition. These data support the hypothesis that protein kinase C can covalently change the functional state of the adenylate cyclase holoenzyme, amplifying its response to certain hormones.  相似文献   

6.
Addition of phorbol ester-activated, partially purified protein kinase C to membranes of human platelets had no effect on forskolin stimulation of the adenylate cyclase and increased stimulation by prostaglandin E1 only at high GTP concentrations by preventing inhibition by GTP. Hormonal inhibition of the platelet adenylate cyclase by epinephrine was eliminated or largely impaired. At low GTP concentrations, epinephrine even caused a small increase in cyclase activity. The data suggest that activated protein kinase C interferes with GTP- and hormone-induced adenylate cyclase inhibition probably by phosphorylating the inhibitory guanine nucleotide-binding regulatory component Ni.  相似文献   

7.
Continuous exposure of rat glioma C6 cells to 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a time and dose dependent loss of [3H]phorbol dibutyrate binding sites and protein kinase C activity. Thus, by 24 h, the cells were essentially depleted of protein kinase C activity. In agreement with previous studies, TPA treatment caused a reduction in isoproterenol-stimulated adenylate cyclase activity and a sequestration of beta-adrenergic receptors. Cells were treated with TPA for 24-48 h to completely down-regulate protein kinase C and then exposed to isoproterenol. Agonist-mediated desensitization of adenylate cyclase and sequestration of beta-adrenergic receptors occurred at similar rates in control and TPA-treated cells. In addition, agonist-mediated down-regulation of beta-adrenergic receptors was not impaired by the absence of protein kinase C activity. Although both agonists and phorbol esters cause desensitization of the beta-adrenergic receptor-coupled adenylate cyclase, agonist-mediated events can occur independently of protein kinase C.  相似文献   

8.
The potentiation of corticotropin-releasing factor (CRF)-stimulated cAMP production by vasopressin (VP) in the pituitary cell was investigated by studies on the interaction of CRF, VP, and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) on cAMP, adenylate cyclase and phosphodiesterase. Addition of VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased the effect of 10 nM CRF with ED50 of about 1 nM. Treatment of the cells with 200 ng/ml pertussis toxin for 4 h increased CRF-stimulated cAMP accumulation by 3.2-fold, an effect that was not additive to those of VP and PMA. Incubation of pituitary cells with 2 mM 1-methyl-3-isobutylxanthine increased CRF-stimulated cAMP accumulation and decreased the relative effect of VP and PMA, suggesting that the actions of VP and PMA are partially due to inhibition of phosphodiesterase. This was confirmed by the demonstration of a 30% inhibition of the low-affinity phosphodiesterase activity in cytosol and membranes prepared from cells preincubated with VP or PMA. In intact cells, following [3H]adenine prelabeling of endogenous ATP pools, measurement of adenylate cyclase in the presence of 1-methyl-3-isobutylxanthine showed no effect of VP and PMA alone, but did show a 2-fold potentiation of the effect of CRF. Measurement of adenylate cyclase in pituitary homogenates by conversion of [alpha-32P]ATP to [32P]cAMP showed a paradoxical GTP-dependent inhibition by VP of basal and CRF-stimulated adenylate cyclase activity, suggesting that the VP receptor is coupled to an inhibitory guanyl nucleotide-binding protein. Pertussis toxin pretreatment of the cells prevented the VP inhibition of adenylate cyclase activity observed in pituitary cell homogenates. These findings indicate that besides inhibition of phosphodiesterase, VP has a dual interaction with the pituitary adenylate cyclase system; a direct inhibitory effect, manifested only in broken cells, that is mediated by a receptor-coupled guanyl nucleotide-binding protein, and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by protein kinase C phosphorylation of one of the components of the CRF-activated adenylate cyclase system.  相似文献   

9.
Calcitonin gene-related peptides I and II (CGRP I and II) were found to stimulate cAMP levels by approximately 4-6 fold in human nonpigmented ciliary epithelial cells with half-maximal effective concentrations of 20 x 10(-10) and 3 x 10(-10) M, respectively. Prior exposure of cells to 6 x 10(-7) M phorbol 12-myristate, 13-acetate for 15 min resulted in a 40-50% inhibition of CGRP II-dependent cAMP stimulation. Phorbol didecanoate and dioctanoylglycerol also effectively inhibited, whereas 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C, had no effect. Staurosporine, a protein kinase C inhibitor, blocked the inhibition of cAMP formation by phorbol esters. cAMP stimulation by forskolin or cholera toxin was not inhibited by phorbol esters, suggesting that neither a Gs protein nor adenylyl cyclase is the site of inhibition by protein kinase C. These data therefore suggest that CGRP receptors are required for inhibition of adenylate cyclase by protein kinase C.  相似文献   

10.
Gonadotropin-stimulated steroidogenesis in the differentiating ovarian granulosa cell is mediated through the activation of cAMP-dependent protein kinase, and is also modulated by calcium-dependent mechanisms. Granulosa cells contain calcium-activated, phospholipid-dependent protein kinase (C kinase), and show an increase in phosphatidylinositol turnover in response to GnRH agonist analogs. To evaluate the role of C kinase in ovarian steroidogenesis, the potent phorbol ester, TPA, and the permeant diacylglycerol, OAG, were used to activate C kinase in granulosa cells from PMSG-treated immature rats. Both TPA and OAG caused dose-dependent stimulation of progesterone production without affecting intra- or extracellular cAMP levels. However, the maximum steroid responses to these compounds were less than those stimulated by cAMP. The ED50 for TPA-stimulated progesterone production was 3 nM, which is close to the known Km for activation of C kinase. Stimulation of steroidogenesis was only observed with biologically-active phorbol esters and permeant diacylglycerols such as OAG and DOG. Exposure of granulosa cells to phospholipase C also increased progesterone production in a dose-dependent manner without changing the cAMP content. Although TPA and OAG did not increase basal cAMP production, both agents enhanced the cAMP responses stimulated by hCG and forskolin; likewise, phospholipase C alone did not change cAMP production but caused a dose-dependent increase in the cAMP responses to hCG and forskolin. These results demonstrate that activation of C kinase promotes steroidogenesis in ovarian granulosa cells, and potentiates the activation of adenylate cyclase by hCG and forskolin. Such findings support the possibility that the calcium, phospholipid-dependent enzyme could be involved in the regulation of progesterone production by hormonal ligands such as gonadotropins and GnRH.  相似文献   

11.
The stimulation of cell proliferation by platelet-derived and other growth factors is associated with a rapid increase in the expression of the c-fos protooncogene. We and others have shown that phosphosphoinositide turnover and protein kinase C play a role in the activation of this gene by growth factors, but that a second, kinase C-independent pathway(s) exist. Because cAMP potentiates the actions of a number of growth factors and is elevated in platelet-derived growth factor-stimulated Swiss 3T3 cells, we examined the ability of cAMP to stimulate c-fos expression in this cell type. Forskolin, a direct activator of adenylate cyclase, elicited marked increases in c-fos mRNA levels. Receptor-mediated activation of adenylate cyclase by prostaglandin E1 and stimulation with the cAMP analog 8-bromo-cAMP also enhanced c-fos expression. In cells made protein-kinase C deficient, c-fos induction by phorbol ester was abolished; by contrast, c-fos was still induced by cAMP-elevating agents in protein kinase C-depleted cells. Platelet-derived growth factor causes cAMP accumulation by stimulating arachidonic acid release and the formation of prostaglandins capable of activating adenylate cyclase. The addition of arachidonic acid and the arachidonate metabolite prostaglandin E2 to Swiss 3T3 cultures stimulated c-fos expression. These data suggest the existence of a pathway from growth factor receptor to gene induction that is mediated by cAMP and does not depend on a phorbol ester-sensitive protein kinase C.  相似文献   

12.
Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µ M , forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.  相似文献   

13.
The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor, a seven-domain transmembrane receptor, is positively coupled to both adenylate cyclase and phospholipase C. PACAP exerts neurotrophic effects which are mainly mediated through the cAMP/protein kinase A pathway. Here we show that the cell-permeable C2-ceramide selectively blocks PACAP-activated cAMP production, without affecting phosphoinositide breakdown. Thus by blocking the neuroprotective cAMP signalling pathway, C2-ceramide will reinforce its direct death-inducing signalling. We found that a reactive oxygen species scavenger reversed the C2-ceramide effect and that H2O2 mimicked it. Together these data indicate that reactive oxygen species (ROS) mediates C2-ceramide-induced cAMP pathway uncoupling. This uncoupling did not involve ATP supply or Galphas protein function but rather adenylate cyclase function per se. Further, the tyrosine phosphatase inhibitors, but not the serine/threonine phosphatase inhibitors, prevent inhibition of cAMP production by ROS. This suggests that H2O2 requires a functional tyrosine phosphatase(s) to block PACAP-dependent cAMP production.  相似文献   

14.
The hormonal response of viable mouse thymocytes is radically dependent of their ambient temperature. While at 37 degrees C the cells respond to isoproterenol by an abrupt rise (within 30 s) followed by a exponential decline in the level of intracellular cAMP, at 4 degrees C the level of cAMP remains high, i.e. there is an inhibition of the hormone-induced refractory state. These distinctly different patterns of response are reflected also in both the state of activation of cAMP-dependent protein kinase and the activity of adenylate cyclase. The inhibition of cellular refractoriness in the cold is shown to be fully reversible, lasting only as long as the hormone is present in the extracellular medium. Washing out the hormone or displacing it by a specific antagonist (propranolol) results in a decline of cAMP, of the activity ratio of the kinase, and of the activity of the adenylate cyclase back to basal values. Evidence is presented to show that at 4 degrees C there is no significant hormone-dependent decreases in cAMP degradation or efflux. On the other hand, the activity of adenylate cyclase remains persistently high, through neither the hormone-binding site of the receptor nor the active site of the catalytic subunit of the cyclase seem to be impaired. The different response pattern observed at 4 degrees C appears, therefore, to be associated with the transfer and the signal between these two sites and probably with the G/F protein (s). The possibility to dissect in a selective and reversible manner the process of hormonal stimulation (coupling) from the process of desensitization, which, under normal physiological conditions constitute consecutive and inseparable chain of events, leads us to a propose that the signal transfer which enables activation of adenylate cyclase is, somewhere along its way, distinct from the signal transfer which brings about the onset of the refractory state, and to conclude that these two processes are partially autonomous and regulated by either two different proteins or two different sites on the same protein. The postulated proteins (or sites) should, therefore, differ in their sensitivity to temperature changes, a difference which may be most useful in the identification and isolation of the molecular species involved and in the study of their properties and their mechanism of action.  相似文献   

15.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

16.
Preincubation of frog erythrocyte lysates with tumor-promoting phorbol diesters leads to an increase in adenylate cyclase activity. This stimulatory effect of phorbol diesters was specific. Incubation with 12-O-tetradecanoylphorbol 13-acetate led to increases in basal (38%) and isoproterenol- (40%), fluoride- (25%), and Mn-stimulated (68%) adenylate cyclase activities compared with control. The inactive phorbol diesters (4 alpha-phorbol 12,13-didecanoate and beta-phorbol) were ineffective in promoting increases in adenylate cyclase activity. The effect of active phorbol diesters was also observed on isolated frog erythrocyte membranes in the absence of cell supernatant, although to a much lesser extent than in the whole lysates. Addition of the cell supernatant or of purified protein kinase C to the membranes maximized the sensitization by the phorbol diesters. These data are consistent with the notion that some component(s) of the adenylate cyclase system is (are) phosphorylated by protein kinase C, resulting in an enhancement of enzyme activity.  相似文献   

17.
The influence of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a direct activator of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), was studied on regulation of human platelet adenylate cyclase. Intact platelets were pretreated with the phorbol ester and, thereafter, membranes were prepared and the regulation of the hormone-sensitive adenylate cyclase in these membranes was studied. The following data were obtained: The TPA treatment applied had apparently no effect on the activity of the catalytic moiety of the platelet adenylate cyclase nor on the stimulatory NS protein nor on stimulatory hormone receptors (prostaglandin E1) and the mutual interactions of these components of the stimulatory hormone-sensitive pathway. However, the TPA treatment of intact platelets largely impaired the GTP-dependent, hormone-sensitive inhibitory pathway to the adenylate cyclase, involving the inhibitory Ni protein. The pretreatment led to a large reduction or loss of adenylate cyclase inhibition by GTP itself and by the inhibitory agonists, epinephrine and thrombin, inhibiting the untreated enzyme via separate receptors by an Ni-mediated process. In contrast, platelet adenylate cyclase inhibition not involving the Ni protein was not affected by the TPA treatment. The observed effects of TPA were very rapid in onset and were not shared by a derivative of TPA which did not activate protein kinase C. The data obtained suggest than protein kinase C activated by the phorbol ester interferes with the platelet adenylate cyclase system, leading to a specific alteration of the Ni-protein-mediated signal transduction to the adenylate cyclase.  相似文献   

18.
19.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

20.
Phorbol esters alter cyclic AMP levels in a number of tissues, including the anterior pituitary. We report that membrane preparations from GH3 cells exposed to phorbol esters exhibit decreased vasoactive intestinal peptide (VIP)-stimulated and enhanced forskolin-stimulated adenylate cyclase activity. The responsiveness of adenylate cyclase activity to NaF, guanylyl-imidodiphosphate, and Mn2+ was also reduced by phorbol ester treatment. The ability of somatostatin to inhibit forskolin-stimulated adenylate cyclase activity was reduced while phorbol ester exposure had no apparent effect on somatostatin inhibition of VIP-stimulated adenylate cyclase activity. We suggest that protein kinase C alters at least two distinct components of the adenylate cyclase system. One modification disrupts hormone receptor-Gs interaction (lowering VIP efficacy) and the second perturbation augments the activity of the adenylate cyclase catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号