首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang H  Wu J  Li J  Ding Y  Shen G  Yu R 《Biosensors & bioelectronics》2005,20(11):2210-2217
A general design strategy for immunosensing platforms has been proposed on the basis of Nanogold particle-enhanced oriented adsorption of antibody fragments. Quartz crystal microbalance (QCM) as a model transducer was fabricated with plasma-polymerized film (PPF) of n-butyl amine and then with nanogold particles resulting in a PPF-nanogold adsorption procedure for half-IgG fragments obtained by reduction of intact immunoglobulin (IgG). Thermodynamic studies reveal that the proposed procedure is superior to the traditional oriented ones in that it created immunosurface of increased antibody surface density (amount) and antigen binding constants. Sensors produced according to the new immobilization procedure exhibit better immunosensing performances including high sensitivity, fast response rate, and favorable operational stability etc. This Nanogold particle-enhanced immobilization technique may be tailored as a promising alternative for various immunosensing platforms in solid-phase immunoassay and affinity chromatography.  相似文献   

2.
Zeng H  Wang H  Chen F  Xin H  Wang G  Xiao L  Song K  Wu D  He Q  Shen G 《Analytical biochemistry》2006,351(1):69-76
An integrated piezoelectric immunosensor array has been developed to immunophenotype acute leukemias in clinic. Each quartz crystal microbalance (QCM) was fabricated with plasma-polymerized film of n-butylamine, nanogold particles, and protein A (PA) to be used to immobilize antibodies in orientation. Leukemic lineage-associated monoclonal antibodies were separately immobilized onto the nanogold-PA-modified surface of the crystals, which were constructed by a 2 x 2 type of probes forming a QCM-based immunosensor array. The main detection conditions were investigated, including the immobilization amount of antibodies, pH, immunoreaction time, sample dilution ratio, etc. The immunophenotyping feasibility of the new technique was investigated through simultaneously analyzing Jurkat cells by the immunosensor array method, immunohistochemistry, and flow cytometry. It was found that the developed technique could readily identify leukemia samples in 5 min and might monitor dynamically the immunoreaction processes. Moreover, comparison studies were carried out for CD antigens expressed on the nucleated cells isolated from 96 acute leukemic patients and 24 normal subjects using the QCM-based immunosensor method and the fluoroimmunoassay. Results obtained by immunophenotyping patients' samples with the immunosensor-based method achieved the rate of 88.93% in 768 groups of numerical data, where no significant statistical difference was observed between the two methods when checked by chi2 analysis (chi2 = 3.4, p > 0.05). This new immunosensor array showed the merits of high sensitivity, high specificity, good reproducibility, easy operation, and low cost. The results of specimen evaluation indicated that it might be clinically suitable for quantifying human differentiated leukocytes and immunophenotyping of acute leukemias.  相似文献   

3.
A capacitance immunosensor based on a plasma-polymerized ethylenediamine film (PPEF) has been developed. The resulting PPEF is studied with scanning electrode micrograph (SEM), IR reflection spectrum and cyclic voltammetry. SEM and IR reflection spectrum showed that the plasma-polymerized film (PPF) formed on the gold electrode surface is quite homogeneous, flat, nonporous and contains plenty of free-reacted -NH2. Moreover, cyclic voltammetry showed that the hexacyanoferrate redox reactions were blocked well by the formed PPF, that is to say, the formed PPF has excellent insulating characteristics. To investigate its applicability for capacitive immunosensing, goat-anti-human IgG antibody (IgGAb) was coupled to the PPF-coated gold electrode surface via glutaraldehyde (GA) to form an immunoglobulin G (IgG) probe. Alternating current (ac) impedance and capacitance measurement were used in the immunoassay. The experiment results show that the PPEF is applicable to form insulating layer of capacitive immunosensors.  相似文献   

4.
For the construction of a well-defined antibody surface, protein A was used as a binding material to immobilize antibodies onto gold-derivatized transducers. The traditional method tends to assemble protein A directly onto the gold-derivatized transducers. In this paper, we tried to indirectly bind protein A onto sensors through hyperbranched polymer (HBP) which was synthesized from p-phenylenediamine and trimesic acid. The three-dimensional structure of HBP and the characteristics including orientation control and biocompatibility of protein A led to highly efficient immunoreactions and enhanced detection system performance. With this strategy, cysteamine monolayer was first assembled onto Au electrodes associated with the piezoelectric quartz crystal; secondly, the cysteamine-modified gold electrode was further modified by the activated HBP; thirdly, protein A was immobilized onto the HBP film; and finally, antibodies were immobilized onto the surface of protein A film for detecting the corresponding antigen. The quartz crystal microbalance immunosensor thus fabricated was applied to detect hepatitis B surface antigen in solutions that ranged from 0.71 to 300 μg mL−1. The detection limit was estimated to be 0.53 μg mL−1. The immunosensor holds good selectivity, sensitivity, and repeatability.  相似文献   

5.
Application of polymer-embedded proteins to fabrication of DNA array   总被引:1,自引:0,他引:1  
A plasma-polymerized film (PPF) of hexamethyldisiloxane [HMDS; (CH(3))(3)SiOSi(CH(3))(3)] was used to immobilize streptavidin on a glass substrate. Another layer of HMDS-PPF was also applied to the protein, which was first adsorbed to an underlayer of the same kind of film. As the result, the streptavidin was "embedded" between the two layers of HMDS, whereby biotinylated molecules could be efficiently captured. The second layer of approximately 30 to 45 A PPF was sufficient to allow the binding of biotinylated molecules, whereas thicknesses of >90 A significantly hindered the streptavidin-biotin interactions. Fluorescence analysis revealed that the absence of an HMDS plasma-polymer (HMDS-PP) layer on either side of the streptavidin film resulted in a decrease in biotin binding. This immobilization technique was used to bind biotinylated oligonucleotides in sequence-specific DNA-DNA interactions. The hydrophobic properties of the plasma-polymerized HMDS thin film acted to minimize nonspecific DNA binding to the glass substrate. A DNA array was fabricated using this procedure and showed greatly decreased nonspecific DNA binding compared with a poly-L-lysine coated substrate.  相似文献   

6.
A molecularly imprinted polymer (MIP) film for domoic acid (DA) was synthesised by direct photo-grafting onto a gold chip suitable for a surface plasmon resonance (SPR) based bioanalytical instrument system, the BIAcore 3000. The gold surface was first functionalised with a self-assembled monolayer of 2-mercaptoethylamine and subsequent carbodiimide chemistry was performed for covalent attachment of the photoinitiator, 4,4'-azobis(cyanovaleric acid). This ensured that the formation of the MIP thin film, comprising 2-(diethylamino) ethyl methacrylate as functional monomer and ethylene glycol dimethacrylate as cross-linker, occurred only at the surface level. Optimisation and control over the grafting procedure were achieved using contact angle measurements and atomic force microscope (AFM) imaging. The surface grafting resulted in the formation of thin and homogeneous MIP film with thickness of 40 nm. A competitive binding assay was performed with free DA and its conjugate with horseradish peroxidase, which was used as a refractive label. The sensor was evaluated for its sensitivity, cross-reactivity, and robustness by using a BIAcore 3000. Likewise, monoclonal antibodies acting as natural receptors for the toxin were studied with the same BIAcore system. Results of a comparison between the artificial and natural receptors are reported. In contrast to monoclonal antibodies, the regeneration of MIP chip did not affect its recognition properties and continuous measurement was possible over a period of at least 2 months.  相似文献   

7.
Sizing of protein A-colloidal gold probes for immunoelectron microscopy   总被引:81,自引:43,他引:38       下载免费PDF全文
Gold particles in colloidal solutions often vary considerably in size. The finest sols (diameter less than 15 nm), especially, are very heterogeneous, as is indicated by coefficients of variance (CV) of 25- 35%. We have complexed staphylococcal protein A with gold particles (PA/Au) and then fractionated the preparations by glycerol or sucrose gradient centrifugation into very homogeneous subfractions. In this way, PA/Au probes of almost any size between 4.5 and 15 nm could be prepared. The variation of the gold particles in these fractions resulted in CV's between 9 and 16%. The reactivity of the PA/Au complex was not affected by the gradient procedure, as was shown by single- and double-labeling immunocytochemistry of ultrathin cryosections of rat pancreatic tissue.  相似文献   

8.
A novel yeast cell-based strategy for the immobilization of antibodies using an amine-terminated self-assembly film has been proposed. A quartz crystal microbalance sensor was according fabricated by coupling with anti-prostate specific antigen (anti-PSA) for PSA immunoassay. The crystal was modified with cysteamine to deposit yeast cells, on which anti-PSA antibodies were immobilized. The surface topologies of the as-prepared crystals were characterized by use of scanning electron microscopy. In contrast to the traditional glutaraldehyde (GLU) approach, the yeast cells could allow antibody molecules bound with higher bioactivity and achieve better immunoreaction capability. Results indicate that immunoassay prepared using the developed yeast cell-binding procedure exhibits increased analytical performance compared with that produced using the GLU cross-linking procedure. A PSA serum concentration in the range of 5.0-604.0ngml(-1) can be determined by this new system.  相似文献   

9.
Monoclonal antibodies (MAbs) specific for cellobiohydrolase I (CBH I) and endoglucanase I (EG I) were conjugated to 10- and 15-nm colloidal gold particles, respectively. The binding of CBH I and EG I was visualized by utilizing the MAb-colloidal gold probes. The visualization procedure involved immobilization of cellulose microfibrils on copper electron microscopy grids, incubation of the cellulose-coated grids with cellulase(s), binding of MAb-colloidal gold conjugates to cellulase(s), and visualization via transmission electron microscopy. CBH I was seen bound to apparent crystalline cellulose as well as apparent amorphous cellulose. EG I was seen bound extensively to apparent amorphous cellulose with minimal binding to crystalline cellulose.  相似文献   

10.
We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte (mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with antimouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.  相似文献   

11.
The serologic detection of anti-Toxoplasma gondii immunoglobulins plays a key role in the clinical diagnosis of Toxoplasmosis. In this paper, a simple, rapid and highly sensitive agglutination-based piezoelectric immunoassay has been firstly developed for directly detecting anti-T. gondii immunoglobulins in infected rabbit serum (IRS) and infected rabbit blood (IRB). The proposed technique is based on that the specific agglutination of antigen-coated gold nanoparticles, averaging 10nm in diameter, in the presence of the corresponding antibody causes a frequency change that is monitored by a piezoelectric device. In contrast to the commonly used piezoelectric assays, it possesses an attractive advantage in that the immobilization of antibody or antigen on the crystal is unnecessary. Use of a newly prepared sensing probe which was modified by a plasma-polymerized film (PPF) of n-butyl amine and further by a heparin layer resulted in a response-enhanced immunoagglutination and a high compatibility of the probe with biological samples. An appropriate reagent consisting of 1% normal rabbit serum (NRS) and 0.1% bovine serum albumin (BSA) for diluting the analytes were verified in counteracting the background interference of assay. Moreover, an optimization of assay medium composition with the addition of poly(ethylene glycol) (PEG) serving as immunoagglutination rate and sensitivity enhancer was investigated in detail. It is found that the developed immunoagglutination assay system is sensitive to dilution ratio of anti-T. gondii antibody as low as 1:5500. Analytical results of several specimens obtained using the developed technique are in satisfactory agreement with those given by the ELISA method, implying a promising alternative approach for detecting anti-T. gondii antibodies in the clinical diagnosis.  相似文献   

12.
A sensitive and selective immunosensor for the nonlabeled detection of sulfate-reducing bacteria (SRB) is constructed using a self-polymerised polydopamine film as the immobilisation platform. Self-polymerisation of dopamine is used as a powerful approach for applying multifunctional coatings onto the surface of a gold electrode. The polydopamine film is used not only as the immobilisation platform, but also as a cross-linker reagent for the immobilisation of the anti-SRB antibody. The polydopamine film is loaded with a high density of anti-SRB antibodies linked to the substrate to obtain high response signals. The formation and fabrication of the biosensor and the quantification of antibody anchoring are monitored, and SRB detection is performed by either quartz crystal microbalance (QCM) or electrochemical impedance spectroscopy (EIS). After modeling the impedance Nyquist plots of the SRB/anti-SRB/polydopamine/gold electrode for increasing concentrations of SRB, the electron transfer resistance (R(ct)) is used as a measure of immunocomplex binding. The R(ct) is correlated with the concentration of bacterial cells in the range of 1.8×10(2) to 1.8×10(6) CFU mL(-1); the detection limit is 50 CFU mL(-1). This work demonstrates a new immobilisation platform for the development of a sensitive and label-less impedimetric and piezoelectric immunosensor. This immunosensor may be broadly applied in clinical diagnoses and the monitoring of water environmental pollution. The method proposed is distinct in its ease of application, use of a simple protocol, and mild reaction conditions. These allow it to be applied to a wide variety of materials.  相似文献   

13.
An automated procedure was developed to determine the geometrical and chemical interactions of crystalline virus particles using the crystal parameters, particle position, orientation, and atomic coordinates for an icosahedral asymmetric unit. Two applications of the program are reported: (1) An analysis of a novelpseudo-rhombohedral (R32) symmetry present in the monoclinic crystal lattices of both Nodamura Virus (NOV) and Coxsackie virus B3 (CVB3). The study shows that in both cases the interactions between particles is substantially increased by minor deviations from exact R32 symmetry and that only particles with the proper ratio of dimensions along twofold and fivefold symmetry axes (such as southern bean mosaic virus) can achieve comparable buried surface area in the true R32 space group. (2) An attempt was made to correlate biological function with remarkably conserved interparticle contact regions found in different crystal forms of three members of the nodavirus family, NOV, Flock House Virus (FHV), and Black Beetle Virus (BBV). Mutational evidence implicates the quasi-threefold region on the viral surface in receptor binding in nodaviruses and this region is dominant in particle contacts in all three virus crystals. Examination of particle contacts in numerous crystal structures of viruses in the picornavirus superfamily showed that portions of the capsid surface known to interact with a receptor or serve as an epitope for monoclonal antibodies frequently stabilize crystal contacts.  相似文献   

14.
A polymer film of porphyrin was formed through electropolymerization of p-amino-substituted tetraphenylporphyrin on indium tin oxide (ITO) surfaces. The adhesion and proliferation of MCF-7 cells (human breast cancer cell line) on the film were investigated. It was found that cells cultured on this film could attach and spread more rapidly than on glass, ITO and tissue culture polystyrene (TCPS), and thus the film was demonstrated to be a good adhering substrate. MTT experimental results show that the viability of cells cultured on this film is higher than on TCPS, and fluorescence microscopic observation indicates that cells cultured on the film are not under apoptosis. Based on its excellent cytocompatibility, the polyporphyrin film was used to modify the gold electrode surface of a piezoelectric quartz crystal, and quartz crystal microbalance (QCM) technique was applied for real-time monitoring of MCF-7 cell growth and assessment of chemical cytotoxicity. The proliferation and condition of cells on the surface of the film-modified quartz crystal gold electrode were investigated through fluorescence microscopic observation. The results obtained from QCM experiments are consistent with that from microscopic observation. Additionally, the polymerized film on gold surface can be removed completely and easily, which greatly improves the reproducibility of the quartz crystal gold electrode.  相似文献   

15.
Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading capacity for externally added heterologous antigens that are fused to a high affinity binding domain. This binding domain, the protein anchor (PA), is derived from the Lactococcus lactis AcmA cell-wall hydrolase, and contains three repeats of a LysM-type cell-wall binding motif. Antigens are produced as antigen-PA fusions by recombinant expression systems that secrete the hybrid proteins into the culture growth medium. GEM particles are then used as affinity beads to isolate the antigen-PA fusions from the complex growth media in a one step procedure after removal of the recombinant producer cells. This procedure is also highly suitable for making multivalent vaccines. The resulting vaccines are stable at room temperature, lack recombinant DNA, and mimic pathogens by their bacterial size, surface display of antigens and adjuvant activity of the bacterial components in the GEM particles. The GEM-based vaccines do not require additional adjuvant for eliciting high levels of specific antibodies in mucosal and systemic compartments.  相似文献   

16.
Human cytomegalovirus (CMV) is a large enveloped virus that encodes multiple glycoproteins required for virus-cell binding and fusion. To assess the binding properties of antibodies with target glycoprotein in a natural context of infection, we investigated the feasibility of using the surface plasmon resonance (SPR) technique for studying the direct binding of antibodies with CMV virions. Direct immobilization of whole virions to sensor surface and a surface regeneration procedure allowed for quantitative and reproducible measurements of binding affinity and binding kinetics of antibody–whole virion interactions. The conformational and functional integrity of viral particles was not compromised by the regeneration condition as evaluated with antibodies recognizing conformational epitopes and by electron microscopy. Binding of an irrelevant antibody was not observed, indicating the high specificity of the method. A panel of anti-gB antibodies was measured and the binding affinities correlated fairly well with those determined by ELISA. These data demonstrated that the interaction of anti-gB antibody with whole virion of large enveloped CMV can be quantitatively studied using SPR. This method has been successfully applied for screening and selection of anti-CMV antibodies and can be potentially extended to study antibody–glycoprotein interactions of other related herpesviruses.  相似文献   

17.
We have analyzed interaction of recombinant human surfactant protein A (SP-A) with isolated rat alveolar macrophages in the electron microscope. SP-A coated onto gold particles of different diameter is bound and internalized by macrophages. Binding and uptake occurs via coated membrane structures. SP-A gold particles are transported to secondary lysosomes. Binding and uptake is specific; i.e., excess of SP-A inhibits SP-A gold particle binding and uptake by 67% and depends on the presence of divalent cations. In experiments with ManBSA (5 x 10(-6) M) inhibition is 60%, but no inhibition occurs with GalBSA. The mannose-dependent interaction of SP-A particles with macrophages is not due to the mannose-specific receptor on the cell surface of macrophages as shown in experiments with macrophages exhibiting reduced mannose receptor activity. These cells show reduced binding and uptake of mannan gold particles (42% inhibition) but no reduction of SP-A gold particle binding and uptake. Furthermore, mannan gold particles do not compete with binding of SP-A gold particles.  相似文献   

18.
Bacterial meningitis is an infection of the thin membranes covering the brain and spinal cord by a number of microorganisms including Neisseria meningitidis, which can lead to permanent neurological damage in the event of late diagnosis. Given the quick onset and severity of the disease, there is a clear need for a rapid, sensitive and specific diagnostic technique. Here, we describe the development and evaluation of an acoustic wave sensor, the quartz crystal microbalance (QCM), as a rapid immunosensor employing antibodies against the cell surface outer membrane protein 85 (OMP85) of N. meningitidis as an immobilized selective layer. These antibodies were directionally orientated as receptors by thin film deposition of structured polyvinylidene fluoride and Protein A. The sensitivity of this QCM immunosensor was further increased by conjugation of the OMP85 antigen to 50 nm gold nanoparticles providing reproducible detection of the target down to 300 ng/mL. Subsequent treatment of the QCM surface with an acidic glycine solution regenerated the immunosensor allowing each crystal to be used several times.  相似文献   

19.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

20.
The present study describes the ultrastructural localization of two important circulating schistosome antigens--the circulating anodic antigen (CAA) and the circulating cathodic antigen (CCA)--in livers of mice at various time intervals after infection with Schistosoma mansoni. For the demonstration of these antigens at the electron microscope level use was made of a direct, double immunogold labeling procedure, in which CAA-specific monoclonal antibodies, labeled with 5-nm gold particles, and CCA-specific monoclonal antibodies, labeled with 15-nm gold particles, were used. Both antigens were localized in granules and in inclusion bodies of Kupffer cells and granuloma macrophages and it was found that in these compartments the degree of 5- and 15-nm gold labeling increased with the duration of the infection. Sometimes gold particles were also encountered on the cell surface and in endocytotic vesicles of these cells, in endothelial cells, and in the space of Disse. From these data it was concluded that in the liver CAA and CCA were primarily accumulated in granules and inclusion bodies of Kupffer cells and granuloma macrophages. It is discussed whether at these locations both antigens are degraded by lysosomal enzymes and whether these antigens are complexed with antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号