首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
p53 is a tumor suppressor that induces cell cycle arrest and apoptosis in response to DNA damage and cancerogenesis. Its ability to bind DNA, and thus play its biological role, is possible in two manners: sequence-specific binding to its consensus sequence (p53CON) and sequence non-specific binding, which occurs preferably in higher DNA structures. Recently, it has been proven that DNA quadruplexes occur in regulation areas of most cancer genes. In our study, we have tested human DNA cloned into plasmid vectors. The DNAs were obtained by chromatin immunoprecipitation of regions which were bound by p53 with high affinity, although they do not contain p53CON. The sequence studied in this work is located in a noncoding region of human chromosome 7. We suggest that structure-specific binding is responsible for higher affinity of p53 binding in these areas. It has been previously found that some single-stranded regions appeared in these areas, suggesting the presence of higher DNA structures by S1 nuclease digestion (unpublished results). Because we were unable to detect the exact location of p53 binding with sufficient resolution by standard methods, we have amplified different parts of immunoprecipitated DNAs by PCR and found, using EMSA, to what part of the insert p53 binds with the highest affinity. This area is represented by cca 150 nucleotides. The strongest preference of p53 was found for the region which contained repeated short tracts of 3–4 Ts and a short polyPu.polyPy sequence. It is known that dAn:dTn blocks can cause DNA curvature, and the polyPu.polyPy sequence is able to form an intramolecular triplex.  相似文献   

4.
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ−/− cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.  相似文献   

5.
Polycation comb-type copolymer that is composed of polylysine backbone and dextran side chains (PLL-g-Dex) has previously been shown to stabilize duplex and triplex DNAs quite effectively. In this study, we have conjugated PLL-g-Dex with oligonucleotides (ODN) aiming to increase the triplex stabilizing efficiency of the copolymer. Here we have demonstrated that the copolymer-TFO conjugates selectively stabilize triplex DNA. Also its potential to form triplex DNA was found to be greater than PLL-g-Dex/ODN mixture.  相似文献   

6.
7.
Purine-rich (GA)- and (GT)-containing oligophosphorothioates were investigated for their triplex-forming potential on a 23 bp DNA duplex target. In our system, GA-containing oligophosphorothioates (23mer GA-PS) were capable of triplex formation with binding affinities lower than (GA)-containing oligophosphodiesters (23mer GA-PO). The orientation of the third strand 23mers GA-PS and GA-PO was antiparallel to the purine strand of the duplex DNA target. In contrast, (GT)-containing oligophosphorothioates (23mer GT-PS) did not support triplex formation in either orientation, whereas the 23mer GT-PO oligophosphodiester demonstrated triplex formation in the antiparallel orientation. GA-PS oligonucleotides, in contrast to GT-PS oligonucleotides, were capable of self-association, but these self-associated structures exhibited lower stabilities than those formed with GA-PO oligonucleotides, suggesting that homoduplex formation (previously described for the 23mer GA-PO sequence by Noonberg et al.) could not fully account for the decrease in triplex stability when phosphorothioate linkages were used. The 23mer GA-PS oligonucleotide was covalently linked via its 5'-end to an acridine derivative (23mer Acr-GA-PS). In the presence of potassium cations, this conjugate demonstrated triplex formation with higher binding affinity than the unmodified 23mer GA-PS oligonucleotide and even than the 23mer GA-PO oligonucleotide. A (GA)-containing oligophosphodiester with two phosphorothioate linkages at both the 5'- and 3'-ends exhibited similar binding affinity to duplex DNA compared with the unmodified GA-PO oligophosphodiester. This capped oligonucleotide was more resistant to nucleases than the GA-PO oligomer and thus represents a good alternative for ex vivo applications of (GA)-containing, triplex-forming oligonucleotides, allowing a higher binding affinity for its duplex target without rapid cellular degradation.  相似文献   

8.
Ye S  Li H  Cao W 《Biosensors & bioelectronics》2011,26(5):2215-2220
A novel electrogenerated chemiluminescence (ECL) biosensor based on the construction of triplex DNA for the detection of adenosine was designed. The ECL biosensor employs an aptamer as a molecular recognition element, and quenches ECL of tris(2,2'-bipyridine) ruthenium (Ru(bpy)(3)(2+)) by ferrocenemonocarboxylic acid (FcA). Through self-assembly technology, the ECL probe of thiolated hairpin adenosine aptamer tagged was self-assembled onto the surface of a gold electrode with an ECL signal producer Ru(bpy)(3)(2+) derivative (Ru-DNA-1). The adenosine aptamer, including a section of triplex characteristic chain, formatted triplex DNA with two other DNAs (DNA-2, Fc-DNA-3) in the presence of triplex DNA binder coralyne chloride (CORA). Fc-DNA-3 was tagged with an ECL quencher ferrocenemonocarboxylic acid (FcA), a quenching probe. In the presence of adenosine, the aptamer sequence (Ru-DNA-1) prefers to form the aptamer-adenosine complex with hairpin configuration and the switch of the DNA-1 occurs in conjunction with the generation of a strong ECL signal owing to the dissociation of a quenching probe. Meanwhile, a control experiment was performed; the ECL-duplex biosensor was designed to detect adenosine. The detection limits were 2.7×10(-10) mol L(-1) and 2.3×10(-9) mol L(-1) for the ECL-triplex DNA biosensor and ECL-duplex DNA biosensor, respectively, which demonstrated that the ECL-triplex DNA biosensor improved the sensitivity and specificity greatly.  相似文献   

9.
Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.  相似文献   

10.
The equimolar mixture of d(CTCTTCTTTCTTTTCTTTCTTCTC) (dY24) and d(GAGAAGAAAGA) (dR11) [designated (dY24).(dR11)], forms at pH = 5 a DNA triplex, which mimicks the H-DNA structure. The DNA triplex was identified by the following criteria: (i) dY24 and dR11 co-migrate in a poly-acrylamide gel, with a mobility and a retardation coefficient comparable to those observed for an 11-triad DNA triplex, previously characterized in our laboratories (1); (ii) the intercalator ethidium bromide shows a poor affinity for (dR11).(dY24) at pH = 5, and a high affinity at pH = 8; (iii) the (dR11).(dY24) mixture is not a substrate for DNase I at pH = 5; (iv) the CD spectrum of (dR11).(dY24), at pH = 5, is consistent with those previously reported for triple-stranded DNA. The (dR11).(dY24) mixture exhibits a thermally induced co-operative transition, which appears to be monophasic, reversible and concentration dependent. This transition is attributed to the disruption of the DNA triplex into single strands. The enthalpy change of the triplex-coil transition was measured by DSC (delta Hcal = 129 +/- 6 kcal/mol) and, assuming a two-state model, by analysis of UV-denaturation curves (average of two methods delta HUV = 137 +/- 13 kcal/mol). Subtracting from delta Hcal of triplex formation the contributions due to the Watson-Crick helix and to the protonation of the C-residues, we found that each pyrimidine binding into the major groove of the duplex, through a Hoogsteen base pair, is accompanied by an average delta H = -5.8 +/- 0.6 kcal/mol. The effect on the stability of the (dR11).(dY24) triplex due to the substitution of a T:A:T triad with a T:T:T one was also investigated.  相似文献   

11.
12.
1. The effect of pH on the buoyant density of the complexes of Ag+ with DNA has been studied using 3H-labeled human DNA and several bacterial DNAs to determine the conditions necessary for the maximum resolution of compositional heterogeneity. In neutral CS2SO4 density gradients, Ag+ complexes with (G - C)-rich components are always denser than those with (A - T)-rich components, since (G - C)rich DNAs have a larger affinity for Ag+ than (A - T)-rich DNAs and their complexes are denser than (A - T)-rich complexes. In alkaline (pH greater than 9) CS2SO4 gradients, the buoyant density of the Ag+ - DNA complex is not a simple function of base composition. The Ag+ affinity of (A - T)-rich DNA is larger than that of (G - C)-rich DNA but the density of a (G - C)-rich complex is larger. Thus the ordering of the buoyant density changes depends on the amount of added Ag+. 2. The problem of resolving the density heterogeneity within a tracer DNA, and minor components of DNA, is explored and useful fractionation techniques are developed.  相似文献   

13.
The formation of an intramolecular dG.dG.dC triplex in Escherichia coli cells is demonstrated at single-base resolution. The intramolecular dG.dG.dC triplex structure was probed in situ for E. coli cells containing plasmid DNAs with varying lengths of poly(dG).poly(dC) tracts employing chloroacetaldehyde. This chemical probe reacts specifically with unpaired DNA bases. The triplex structure formed with the poly(dG).poly(dC) tracts of 35 and 44 base-pairs, but not with 25 base-pairs. The triplex was detected only one to two hours after the chloramphenicol treatment: the period at which the extracted plasmid DNA revealed the maximal superhelical density.  相似文献   

14.
Binding of E.coli lac repressor to non-operator DNA*   总被引:4,自引:2,他引:2       下载免费PDF全文
It is shown by melting profile analysis of lac repressor-DNA complexes that repressor binds tightly and preferentially (relative to single-stranded DNA) to double-stranded non-operator DNA. This binding stabilizes the DNA against melting and the repressor against thermal denaturation. Analysis of the extent of stabilization and the rate of dissociation of repressor from non-operator DNA as a function of sodium ion concentration shows, in confirmation of other studies,(3,4) that the binding constant (K(RD)) is very ionic strength dependent; K(RD) increases from approximately 10(6) M(-1) at approximately 0.1 M Na(+) to values in excess of 10(10) M(-1) at 0.002 M Na(+). Repressor bound to non-operator DNA is not further stabilized against thermal denaturation by inducer binding, indicating that the inducer and DNA binding sites probably represent separately stabilized local conformations. Transfer melting experiments are used to measure the rate of dissociation of repressor from operator DNA. These experiments show that most of the ionic strength dependence of the binding constant is in the dissociation process; the estimated dissociation rate constant decreases from greater than 10(-1) sec(-1) at [Na(+)] >/= 0.02 M to less than 10(-4) sec(-1) at [Na(+)] 相似文献   

15.
A monoclonal antibody (Jel 318) was produced by immunizing mice with poly[d(TmC)].poly[d(GA)].poly[d(mCT) which forms a stable triplex at neutral pH. Jel 318 did not bind to calf thymus DNA or other non pyrimidine.purine DNAs such as poly[d(TG)].poly[d(CA)]. In addition the antibody did not recognize pyrimidine.purine DNAs containing mA (e.g. poly[d(TC)].poly[d(GmA)]) which cannot form a triplex since the methyl group blocks Hoogsteen base-pairing. The binding of Jel 318 to chromosomes was assessed by immunofluorescent microscopy of mouse myeloma cells which had been fixed in methanol/acetic acid. An antibody specific for duplex DNA (Jel 239) served as a control. The fluorescence due to Jel 318 was much weaker than that of Jel 239 but binding to metaphase chromosomes and interphase nuclei was observed. The staining by Jel 318 was unaffected by addition of E. coli DNA but it was obliterated in the presence of triplex. Since an acid pH favours triplex formation, nuclei were also prepared from mouse melanoma cells by fixation in cold acetone. Again Jel 318 showed weak but consistent staining of the nuclei. Therefore it seems likely that triplexes are an inherent feature of the structure of eucaryotic DNA.  相似文献   

16.
The interaction of coralyne, an antitumour alkaloid with natural and synthetic duplex DNAs was investigated under conditions where the drug existed fully as a true monomer for the first time using spectrophotometric, spectrofluorimetric, circular dichroic and viscometric techniques. The absorption spectrum of coralyne monomer showed hypochromic and bathochromic effects on binding to duplex DNAs. This effect was used to determine the binding parameters of coralyne. The binding constants for four natural DNAs and four synthetic polynucleotides obtained from spectrophotometric titration, according to an excluded site model, using McGhee-von Hippel analysis, were all in the range of (0.38-9.8) x 10(5) M-1, and showed a relatively high specificity for the GC rich ML DNA and the alternating GC polynucleotide. The binding of coralyne decreased with increasing ionic strength, indicating that the binding affinity has a strong electrostatic component. Coralyne stabilized all the DNAs against thermal strand separation. The intense steady state fluorescence of coralyne was effectively quenched on binding to DNAs and the quantitative data on the Stern-Volmer quenching constant obtained was sequence dependent, being maximum with the GC rich DNA and alternating GC polymer. Circular dichriosm studies further evidenced for a strong perturbation of the B-conformation of DNAs consequent to coralyne binding with the concomitant development of extrinsic circular dichroic bands for the bound drug molecules suggesting their strong intercalated geometry in duplex DNAs. Further tests of intercalation using viscosity measurements on linear and covalently closed plasmid DNA conclusively proved the strong intercalation of coralyne in duplex DNA. Binding of the closely related natural alkaloid, berberine under these conditions showed considerably lower affinity to duplex DNAs in all experiments. Taken together, these results suggest that coralyne binds strongly to duplex DNAs by a mechanism of intercalation with specificity towards alternating GC duplex structure.  相似文献   

17.
Restriction enzyme inhibition studies have been employed to map the locations of high affinity binding sites of the carcinogen N-acetoxy-N-acetyl-2-aminofluorene (acetoxyAAF) on pBR322, phiX174 and SV40 DNAs. Bound carcinogen levels were kept low (less than 20 bound AAF moieties per DNA molecule) in order to observe only the binding to the high affinity sites. Inhibition of certain restriction enzymes was observed in a limited number of locations on these DNAs. Inhibition increased as bound AAF increased and the particular restriction enzymes inhibited varied with location. On all three DNAs, activities of these enzymes was not affected in other locations. Comparison of the sequences at the sites of inhibition on the three DNAs indicates that all sites have common sequence elements: the presence of either the sequence T(C/G)TT(G/C) or the sequence T(G/C)CTT(G/C).  相似文献   

18.
19.
A DNA triplex is formed through binding of a third strand to the major groove of a duplex. Due to the high charge density of a DNA triplex, metal ions are critical for its stability. We recently developed the tightly bound ion (TBI) model for ion-nucleic acids interactions. The model accounts for the potential correlation and fluctuations of the ion distribution. We now apply the TBI model to analyze the ion dependence of the thermodynamic stability for DNA triplexes. We focus on two experimentally studied systems: a 24-base DNA triplex and a pair of interacting 14-base triplexes. Our theoretical calculations for the number of bound ions indicate that the TBI model provides improved predictions for the number of bound ions than the classical Poisson-Boltzmann (PB) equation. The improvement is more significant for a triplex, which has a higher charge density than a duplex. This is possibly due to the higher ion concentration around the triplex and hence a stronger ion correlation effect for a triplex. In addition, our analysis for the free energy landscape for a pair of 14-mer triplexes immersed in an ionic solution shows that divalent ions could induce an attractive force between the triplexes. Furthermore, we investigate how the protonated cytosines in the triplexes affect the stability of the triplex helices.  相似文献   

20.
Binding of triple helix forming oligonucleotides to sites in gene promoters   总被引:41,自引:0,他引:41  
A class of triplex-forming oligodeoxyribonucleotides (TFOs) is described that can bind to naturally occurring sites in duplex DNA at physiological pH in the presence of magnesium. The data are consistent with a structure in which the TFO binds in the major groove of double-stranded DNA to form a three-stranded complex that is superficially similar to previously described triplexes. The distinguishing features of this class of triplex are that TFO binding apparently involves the formation of hydrogen-bonded G.GC and T.AT triplets and the TFO is bound antiparallel with respect to the more purine-rich strand of the underlying duplex. Triplex formation is described for targets in the promoter regions of three different genes: the human c-myc and epidermal growth factor receptor genes and the mouse insulin receptor gene. All three sites are relatively GC rich and have a high percentage of purine residues on one strand. DNase I footprinting shows that individual TFOs bind selectively to their target sites at pH 7.4-7.8 in the presence of millimolar concentrations of magnesium. Electrophoretic analysis of triplex formation indicates that specific TFOs bind to their target sites with apparent dissociation constants in the 10(-7)-10(-9) M range. Strand orientation of the bound TFOs was confirmed by attaching eosin or an iron-chelating group to one end of the TFO and monitoring the pattern of damage to the bound duplex DNA. Possible hydrogen-bonding patterns and triplex structures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号