首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Apoplastic mobility of sucrose in storage parenchyma of sugar beet   总被引:2,自引:0,他引:2  
The apoplastic movement of sucrose through storage parenchyma discs (2.4 mm thick) from roots of sugar beet ( Beta vulgaris var. altissima ) was investigated in order to evaluate the suitability of the apoplast for transcellular sugar transport. The sucrose permeability of the discs (P = 5.7 × 10−8 cm s−1 at 25°C) was more than two orders of magnitude lower than that of an equally thick layer of unstirred water. This is due to the small volume fraction of free space (3.1%) and the decreased diffusion coefficient D of sucrose in the cell walls. The effective diffusion coefficient of the apoplast (6 to 9 × 10−7 cm2 s−1 at 25°C) was determined independently of the cross sectional area of free space by treating the time course of fluxes according to Fick's second law. The high diffusion resistance of the apoplast has to be considered in models of native parenchyma transport.  相似文献   

3.
Diffusion coefficients for the intercellular movement of fluorescent tracers have been measured in the epidermis of a larval beetle. Fluorescent tracer was injected into a cell and the spread of tracer from cell to cell in this monolayer was recorded by a TV camera. Fluorescence intensities were digitized from the TV images at successive times after the start of injection at various distances from the source by a microcomputer interfaced with a video analyzer. From the relationship between concentration (measured as light intensity), time and distance, an effective diffusion coefficient (De) is calculated for the tracer in the tissue. In newly ecdysed epidermis, De for carboxyfluorescein (CF) is 2.7 X 10(-7) cm2/s, and De for lissamine rhodamine B (LRB) is 1.2 X 10(-7) cm2/s, whereas in intermolt epidermis the De's for CF and LRB are 3.7 X 10(-7) and 1.2 X 10(-7) cm2/s, respectively. These diffusion coefficients are only an order of magnitude lower than their values in water. The ratio of De for the two tracers at these two stages of development differs from the ratio predicted in cytoplasm alone, with the movement of the slightly larger molecule (LRB) being impeded relative to that of the smaller molecule (CF). This suggests that the properties of the membrane channels amplify differences in the rates of movement of molecules of similar size. This may be important during cell patterning in development. De for CF was also monitored as junctional resistance was increased in the epidermis. During 30 min of exposure to 0.25 mM chlorpromazine, De dropped to 20% of its initial value of 5 X 10(-7) cm2/s, implying that the junctional membrane, rather than cytoplasm, is the major barrier to molecular diffusion among the cells.  相似文献   

4.
肠系膜微血管通透速度的图象分析   总被引:5,自引:0,他引:5  
本文应用微循环活体观察和荧光示踪技术,通过计算机数字图象处理对荧光素钠(FINa)和FITC-Dextrans(FD-4,MW4000,FD-150,MW150000)在肠系膜微血管的通透过程进行了定量研究,建立了正常大鼠肠系膜微血管对不同分子量荧光物质的通透方程,得到了通透系数及对通透系数评价的定量方法。结果证实:颈动脉注射荧光素钠后4s即可在微血管中见到,扩散速度很快,通透系数为3.362×10-8cm2/s。注射FD-4后15s可在微血管中见到,扩散速度比荧光素钠慢1倍左右,通透系数为1.718×10-8cm2/s。注射FD-150后8s可在微血管中见到,扩散速度很慢,约为荧光素钠扩散速度的1/70,通透系数为0.0486×10-8cm2/s。荧光物质的渗出部位主要在毛细血管及细静脉,在细动脉则极少见到。证实我们计算得出的通透系数能够较好地反映肠系膜微血管通透的实际情况,所采用的评价方法及得到的通透方程可以用于微血管物质交换参数的定量评价。  相似文献   

5.
The apoplastic permeability of the fungal sheath of two different ectomycorrhizal associations of Pinus sylvestris L. was analysed by laser microprobe mass analysis (LAMMA) and energy-dispersive X-ray spectroscopy (EDXS) after stable isotope labelling with 25Mg, 41K and 44Ca. Entry of 25Mg and 44Ca into the outer cortical apoplast of non-mycorrhizal roots was detected after 4 min of labelling. After a longer exposure time the endodermis with its Casparian band acted as an efficient apoplastic diffusion barrier for the radial movement of 25Mg and 44Ca into the stele. A fraction of approximately one-third of the apoplastic cations of the root cortex could not be exchanged against the external label even after longer exposure times. The ectomycorrhizal sheath of the two fungal species used, Pisolithus tinctorius (Pers.) Coker & Couch and Suillus bovinus (L. ex Fr.) Kuntze, does not completely inhibit the apoplastic movement of ions into the mycorrhizal root cortex, but retarded the penetration of isotopes into the cortical apoplast. In roots inoculated with S. bovinus, a clear labelling of the cortical apoplast could first be detected after 24 h of exposure to the stable isotope solution. At this time the labelling of the cortical apoplast in these mycorrhizal roots was higher than those of non-mycorrhizal roots and, with EDXS, changes in the element composition of the apoplast were detected. The results indicated that possibly hydrophobins localized in the fungal cell wall might be involved in the increased hydrophobicity of mycorrhizal roots and the lower permeability of the ectomycorrhizal sheath.  相似文献   

6.
7.
6(5)carboxyfluorescein (6(5)CF), a polar fluorescein with an apparent pK of 6.3, was introduced, as a pH 6.3 solution, into the apoplast of lamina or petioles of mature soybean leaves. Freehand sections were prepared at various times and immediately observed with a fluorescence microscope. 6(5)CF-associated fluorescence appeared in all sink organs, from shoot apex to roots. It was strictly confined to the phloem regions, even after 4 days. Its transport into young leaves ceased at approximately the time they underwent sink-to-source transition. It was never transported between two leaflets of the same leaf. Its transport was interrupted by phloem destruction. All these transport characteristics were highly reproducible, and were paralleled by those of 14C transport after application of (14C)sucrose to leaf surfaces. In contrast with 6(5)CF, fluorescein was transported between mature leaves, and between leaflets of the same leaf. It was not restricted to phloem, and often appeared in the xylem region. These results indicate that 6(5)CF can be used to monitor phloem sap translocation in real time, in short- and long-term experiments.  相似文献   

8.
Single-particle tracking (SPT) was used to determine the mobility characteristics of MHC (major histocompatibility complex) class I molecules at the surface of HeLa cells at 22 degrees C and on different time scales. MHC class I was labeled using the Fab fragment of a monoclonal antibody (W6/32), covalently bound to either R-phycoerythrin or fluorescent microspheres, and the particles were tracked using high-sensitivity fluorescence imaging. Analysis of the data for a fixed time interval suggests a reasonable fit to a random diffusion model. The best fit values of the diffusion coefficient D decreased markedly, however, with increasing time interval, demonstrating the existence of anomalous diffusion. Further analysis of the data shows that the diffusion is anomalous over the complete time range investigated, 4-300 s. Fitting the results obtained with the R-phycoerythrin probe to D = D0talpha-1, where Do is a constant and t is the time, gave D0 = (6.7 +/- 4.5) x 10(-11) cm2 s-1 and alpha = 0.49 +/- 0.16. Experiments with fluorescent microspheres were less reproducible and gave slower anomalous diffusion. The R-phycoerythrin probe is considered more reliable for fluorescent SPT because it is small (11 x 8 nm) and monovalent. The type of motion exhibited by the class I molecules will greatly affect their ability to migrate in the plane of the membrane. Anomalous diffusion, in particular, greatly reduces the distance a class I molecule can travel on the time scale of minutes. The present data are discussed in relation to the possible role of diffusion and clustering in T-cell activation.  相似文献   

9.
Fluorescence correlation microscopy (FCM) is a new single-molecule detection technique based on the confocal principle to quantify molecular diffusion and concentration of fluorescent molecules (particles) with sub-micron resolution. In this study, FCM is applied to examine the diffusional behaviour of fluorescent Nod factor analogues on living Vicia sativa root hairs. Three recently described Nod factors with a fluorescent acyl chain (Goedhart et al. Biochemistry 1999, 38, 10898-10907) were used. Plasmolysis of fluorescently labelled root hairs showed that the Nod factors are predominantly located in the cell wall, as hardly any fluorescence could be detected in the plasma membrane. After Nod factor-induced root hair deformation, the new outgrowth was not labelled, indicating a lack of migration of Nod factors to the newly synthesized cell wall. In agreement, FCM showed a > 1,000-fold reduction of molecular mobility of the fluorescence Nod factors upon binding to the cell wall. In addition, FCM demonstrated that Nod factors, when exogenously applied in aqueous solution at 10 nM, markedly concentrate in the cell wall of root hairs (up to 50-fold). The feasibility of applying FCM for the study of living plant cells as well as the implications of our results for the perception of Nod factors are discussed.  相似文献   

10.
In roots of 5-6-day old seedlings of three cultivars of the winter wheat, varying in drought-resistance: Bezostaya 1 (low resistant), Mironovskaya 808 (resistant), and Albidum 114 (highly resistant) water permeability of two transport channels of plasmodesmata was studied at the action of cytochalasin B, which is known to inhibit polymerization of cytoskeleton actin filaments, by a pulse method of NMR, on the background of increasing water loss in the seedlings. It has been found that the registered coefficients of water self diffusion, two of which (D2 and D3) depend on the water permeability of different transport channels of plasmodesmata, differ in opposite directions. This may suggest that in roots of drought-resistant plants, after a moderate water loss, a diffusive water flow through the cytoplasmic symplast increases (demonstrated by an increase of D2), while that through the vacuolar symplast decreases (seen by an increase of D3). After a high water loss in seedlings, we noticed an even greater increase in water permeability of the cytoplasmic symplast, and a decrease in water permeability of the vacuolar symplast, however, in the roots of low resistant cultivars these changes were poorly expressed, if at all. Under stress-less conditions cytochalasin B would result in an increased water transport through the cytoplasmic channel of plasmodesmata due apparently to a destruction of their actin-myosin sphincters. Both weak and average degrees of water loss would strengthen the cytochalasin B exerted influence on plasmodesmal water conductance, that may testify to a synergetic action of these two factors. After a significant water loss this action was kept only partially, because the inhibitor, on blocking the cytoplasmic channel, did increase at the same time the effect of water stress, limiting water flows through the vacuolar symplast and, simultaneously, raising the water inflow to the apoplast.  相似文献   

11.
Recombinant baculovirus particles displaying green fluorescent protein (GFP) fused to the major envelope glycoprotein gp64 of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) were characterized by fluorescence correlation spectroscopy (FCS). FCS detected Brownian motion of single, intact recombinant baculovirus display particles with a diffusion coefficient (D) of (2.89 +/- 0.74) x 10(-8) cm2s(-1) and an apparent hydrodynamic radius of 83.35 +/- 21.22 nm. In the presence of sodium dodecyl sulfate (SDS), Triton X-100, and octylglucoside, the diffusion time was reduced to the 0.2 ms range (D = 7.57 x 10(-7) cm2s(-1)), showing that the fusion proteins were anchored in the viral envelope. This allowed for a calculation of the number of single gp64 fusion proteins incorporated in the viral membrane. A mean value of 3.2 fluorescent proteins per virus particle was obtained. Our results show that FCS is the method of choice for studying enveloped viruses such as a display virus with one component being GFP.  相似文献   

12.
Apoplast/cytoplasm partitioning of ascorbic acid (AA) was examined in four genotypes of snap bean ( Phaseolus vulgaris L.) known to differ in ozone sensitivity. Plants were grown in pots under field conditions using open-top chambers to establish charcoal-filtered (CF) air (36 nmol mol−1 ozone) or elevated ozone (77 nmol mol−1 ozone) treatments. AA in fully expanded leaves of 36-day-old plants was separated into apoplast and cytoplasm fractions by vacuum infiltration methods using glucose 6-phosphate as a marker for cytoplasm contamination. Apoplast ascorbate levels ranged from 30 to 150 nmol g−1 fresh weight. Ozone-sensitive genotypes partitioned 1–2% of total AA into the apoplast under CF conditions and up to 7% following a 7-day ozone exposure. In contrast, an ozone-tolerant genotype partitioned 3–4% of total leaf AA into the leaf apoplast in both CF and ozone-treated plants. The results suggest that genetic background and ozone stress are factors that affect AA levels in the extracellular space. For all genotypes, the fraction of AA in the oxidized form was higher in the apoplast compared to the cytoplasm, indicative of a more oxidizing environment within the cell wall.  相似文献   

13.
We have used spot fluorescence photobleaching recovery methods to measure the lateral diffusion of GnRH receptor (GnRHR) fused at its C terminus to green fluorescent protein (GFP) after binding of either GnRH agonists or antagonist. Before ligand binding, GnRHR-GFP exhibited fast rates of lateral diffusion (D = 18 +/- 2.8 x 10(-10)cm2 x sec(-1)) and high values for fractional fluorescence recovery (%R) after photobleaching (73 +/- 1%). Increasing concentrations of agonists, GnRH or D-Ala6-GnRH, caused a dose-dependent slowing of receptor lateral diffusion as well as a decreased fraction of mobile receptors. Increasing concentrations of the GnRH antagonist Antide slowed the rate of receptor diffusion but had no effect on the fraction of mobile receptors, which remained high. To determine whether the decrease in %R caused by GnRH agonists was due, in part, to increased receptor self-association, we measured the fluorescence resonance energy transfer efficiency between GnRHR-GFP and yellow fluorescent protein-GNRHR: There was no energy transfer between GnRHR on untreated cells. Treatment of cells with GnRH agonists led to a concentration-dependent increase in the energy transfer between GnRH receptors to a maximum value of 16 +/- 1%. There was no significant energy transfer between GnRH receptors on cells treated with Antide, even at a concentration of 100 nM. These data provide direct evidence that, before binding of ligand, GnRHR exists as an isolated receptor and that binding of GnRH agonists, but not antagonist, leads to formation of large complexes that exhibit slow diffusion and contain receptors that are self-associated.  相似文献   

14.
转SCaM—GFP融合基因烟草中钙调素分泌特性的研究   总被引:5,自引:0,他引:5  
钙调素是一种重要的Ca2 结合蛋白 ,在细胞内发挥着重要的生物学功能。一系列实验证实 ,钙调素也普遍存在于动植物细胞外[1- 3 ] ,并且具有重要的生物学功能[4 - 6] 。我们实验室的研究表明 :胞内外钙调素在Ca2 依赖性以及在靶酶激活特性等方面基本相同 ,但在Ca2 亲合力等方面存在差异[2 ,7] 。近年来 ,在植物细胞中发现存在多种钙调素亚型 ,特别是在大豆中对钙调素亚型研究得比较清楚[8] 。通过对大豆中钙调素亚型亚细胞定位的研究 ,一方面可以阐明钙调素是否具有向胞外主动分泌的特性 ,另一方面可以确定向细胞外分泌的钙调素是…  相似文献   

15.
Pulsed high-field gradient in vivo NMR spectroscopy was used to measure diffusional water permeability in cell suspensions of the Gram-positive bacterium Corynebacterium glutamicum. Two different regions of H2O mobility were detected. One was characterized by the apparent coefficient of self-diffusion, D(1 app) = (4.6-12.7)x10(-8) cm(2) s(-1), depending on the observation time t. The other region was characterized by D(2) = 1.4x10(-5) cm(2) s(-1). The value of D(2) was similar to the diffusion coefficient of H2O in free water and in extracellular biological fluids. Restricted diffusion could be demonstrated for the slower process (D(1)). It was attributed to the cytoplasm of the cells. The membrane permeability, P(d H2O), for C. glutamicum was (4.8+/-0.4)x10(-3) cm s(-1). It compared favorably with values reported for human erythrocytes and was higher by a factor of about 100 compared to the diffusional permeability for ethanol, P(d ethanol), in Zymomonas mobilis. Addition of HgCl2, a water channel inhibitor in eukaryotes, decreased P(d H2O) in C. glutamicum by a factor of approximately 8. To our knowledge, these are the first functional studies of water transport in prokaryotes that yielded quantitative data, viz., transmembrane water permeability expressed through D(H2O) and P(d H2O).  相似文献   

16.
Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense.  相似文献   

17.
The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure perfusion technique for 30-d-old rice plants (lowland cultivar, IR64, and upland cultivar, Azucena). The technique was based on the perfusion of aerenchyma of root segments from two different zones (20-50 mm and 50-100 mm from the root apex) with aerated nutrient solution using precise pump rates. The outer part of roots (OPR) comprised an outermost rhizodermis, an exodermis, sclerenchyma fibre cells, and the innermost unmodified cortical cell layer. No root anatomical differences were observed for the two cultivars used. Development of apoplastic barriers such as Casparian bands and suberin lamellae in the exodermis were highly variable. On average, matured apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification of the exodermis was completed earlier than that of sclerenchyma cells. Radial water flow across the OPR was impeded either by partially blocking off the porous apoplast with China ink particles (diameter 50 nm) or by closing water channels (aquaporins) in cell membranes with 50 micro M HgCl2. The reduction of LpOPR was relatively larger in the presence of an apoplastic blockage with ink ( approximately 30%) than in the presence of the water channel blocker ( approximately 10%) suggesting a relatively larger apoplastic water flow. The reflection coefficient of the OPR (sigmasOPR) for mannitol significantly increased during both treatments. It was larger when pores of the apoplast were closed, but absolute values were low (overall range of sigmasOPR=0.1-0.4), which also suggested a large contribution of the non-selective, apoplastic path to overall water flow. The strongest evidence in favour of a predominantly apoplastic water transport came from the comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a factor of 600-1400 compared with P(dOPR). The development of OPR along roots resulted in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of two. Even though both pathways (apoplast and cell-to-cell) contributed to the overall water flow, the findings indicate predominantly apoplastic water flow across the OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the outer anaerobic soil medium (low PO2OPR). To date, there are no data on PO2OPR. Provisional data of radial oxygen losses (ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen within the aerenchyma. This ability strongly increases as roots/OPR develop.  相似文献   

18.
FRAP法对内源性GFP在活细胞中动态分布的共焦显微镜成像   总被引:1,自引:0,他引:1  
金鹰  邢达 《激光生物学报》2005,14(4):293-298
各种分子在核质问的动态分布与它们的跨膜转运密切相关。离子、r证矾A和多数小分子量蛋白可以通过核孔复合物(NPG,nuclear pore complexes)在核质问自由扩散,而分子量大于70kDa的分子需要ATP和核定位序列才能实现跨膜转运。本实验利用荧光漂白后恢复(FRAP,fluorescence recovery after photobleaching)法观测人肺腺癌肿瘤细胞(ASTC-a-1)中表达的27 kDa EGFP在核质问的被动扩散,并以激光共焦显微镜进行实时成像。转染EGFP外源基因的肿瘤细胞系在经过半年的传代培养后仍能稳定而高效的表达其荧光标记。实验表明,EGFP分子可以通过核孔在核质间被动扩散,但扩散速度远低于在核内或质内的速度,没有证据表明EGFP可以在细胞问扩散。  相似文献   

19.
The regulation of transepithelial water permeability in toad urinary bladder is believed to involve a cycling of endocytic vesicles containing water transporters between an intracellular compartment and the cell luminal membrane. Endocytic vesicles arising from luminal membrane were labeled selectively in the intact toad bladder with the impermeant fluid-phase markers 6-carboxyfluorescein (6CF) or fluorescein-dextran. A microsomal preparation containing labeled endocytic vesicles was prepared by cell scraping, homogenization, and differential centrifugation. Osmotic water permeability was measured by a stopped-flow fluorescence technique in which microsomes containing 50 mM mannitol, 5 mM K phosphate, pH 8.5 were subject to a 60-mM inwardly directed gradient of sucrose; the time course of endosome volume, representing osmotic water transport, was inferred from the time course of fluorescence self-quenching. Endocytic vesicles were prepared from toad bladders with hypoosmotic lumen solution treated with (group A) or without (group B) serosal vasopressin at 23 degrees C, and bladders in which endocytosis was inhibited by treatment with vasopressin at 0-2 degrees C (group C), or with vasopressin plus sodium azide at 23 degrees C (group D). Stopped-flow results in all four groups showed a slow rate of 6CF fluorescence decrease (time constants 1.0-1.7 s for exponential fit) indicating a component of nonendocytic 6CF entrapment into sealed vesicles. However, in vesicles from group A only, there was a very rapid 6CF fluorescence decrease (time constant 9.6 +/- 0.2 ms, SEM, 18 separate preparations) with an osmotic water permeability coefficient (Pf) of greater than 0.1 cm/s (18 degrees C) and activation energy of 3.9 +/- 0.8 kcal/mol (16 kJ/mol). Pf was inhibited reversibly by greater than 60% by 1 mM HgCl2. The rapid fluorescence decrease was absent in vesicles in groups B, C, and D. These results demonstrate the presence of functional water transporters in vasopressin-induced endocytic vesicles from toad bladder, supporting the hypothesis that water channels are cycled to and from the luminal membrane and providing a functional marker for the vasopressin-sensitive water channel. The calculated Pf in the vasopressin-induced endocytic vesicles is the highest Pf reported for any biological or artificial membrane.  相似文献   

20.
Radial hydraulic conductivity along developing onion roots   总被引:24,自引:0,他引:24  
Although most studies have shown that water uptake varies along the length of a developing root, there is no consistent correlation of this pattern with root anatomy. In the present study, water movement into three zones of onion roots was measured by a series of mini-potometers. Uptake was least in the youngest zone (mean hydraulic conductivity, Lpr = 1.5 x 10(-7) +/- 0.34 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) in which the endodermis had developed only Casparian bands and the exodermis was immature. Uptake was significantly greater in the middle zone (Lpr = 2.4 x 10(-7) +/- 0.43 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots) which had a mature exodermis with both Casparian bands and suberin lamellae, and continued at this level in the oldest zone in which the endodermis had also developed suberin lamellae (Lpr = 2.8 x 10(-7) +/- 0.30 x 10(-7) m MPa-1 s-1; +/- SE, n = 10 roots). Measurements of the hydraulic conductivities of individual cells (Lp) in the outer cortex using a cell pressure probe indicated that this parameter was uniform in all three zones tested (Lp = 1.3 x 10(-6) +/- 0.01 x 10(-6) m MPa-1 s-1; +/- SE, n = 60 cells). Lp of the youngest zone was lowered by mercuric chloride treatment, indicating the involvement of mercury-sensitive water channels (aquaporins). Water flow in the older two root zones measured by mini-potometers was also inhibited by mercuric chloride, despite the demonstrated impermeability of their exodermal layers to this substance. Thus, water channels in the epidermis and/or exodermis of the older regions were especially significant for water flow. The results of this and previous studies are discussed in terms of two models. The first, which describes maize root with an immature exodermis, is the 'uniform resistance model' where hydraulic resistances are evenly distributed across the root cylinder. The second, which describes the onion root with a mature exodermis, is the 'non-uniform resistance model' where resistances can be variable and are concentrated in a certain layer(s) on the radial path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号