首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
A reversed-phase high-performance liquid chromatographic assay (HPLC) was utilized for monitoring xanomeline (LY246708/NNC 11–0232) and a metabolite, desmethylxanomeline, in human plasma. Xanomeline, desmethylxanomeline and internal standard were extracted from plasma with hexane at basic pH. The organic solvent extract was evaporated to dryness with nitrogen and the dried residue was reconstituted with 0.2 M HCl-methanol (50:50, v/v). A Zorbax CN 150 × 4.6 mm I.D., 5-μm column and mobile phase consisting of 0.5% (5 ml/l) triethylamine (TEA) adjusted to pH 3.0 with concentrated orthophosphoric acid-tetrahydrofuran (THF) (70:30, v/v) produced consistent resolution of analytes from endogenous co-extracted plasma components. Column effluent was monitored at 296 nm/0.008 a.u.f.s. and the assay limit of quantification was 1.5 ng/ml. A linear response of 1.5 to 20 ng/ml was sufficient to monitor plasma drug/metabolite concentrations during clinical trials. HPLC assay validation as well as routine assay quality control (QC) samples indicated assay precision/accuracy was better than ±15%.  相似文献   

3.
We have established a highly sensitive high-performance liquid chromatographic method for the determination of an anticancer drug, UCN-01, in human plasma or urine. Using a fluorescence detector set at an excitation wavelength of 310 nm and emission monitored at 410 nm, there was a good linearity for UCN-01 in human plasma (r=0.999) or urine (r=0.999) at concentrations ranging from 0.2 to 100 ng/ml or 1 to 400 ng/ml, respectively. For intra-day assay, in plasma samples, the precision and accuracy were 1.8% to 5.6% and −10.0% to 5.2%, respectively. For inter-day assay, the precision and accuracy were 2.0% to 18.2% and 2.4% to 10.0%, respectively. In urine samples, the intra- and inter-day precision and accuracy were within 3.9% and ±2.7%, respectively. The lower limit of quantification (LLOQ) was set at 0.2 ng/ml in plasma and 1 ng/ml in urine. UCN-01 in plasma samples was stable up to two weeks at −80°C and also up to four weeks in urine samples. This method could be very useful for studying the human pharmacokinetics of UCN-01.  相似文献   

4.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

5.
A method was developed for the determination of gemifloxacin (I) in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with acetonitrile containing [13C2H3] gemifloxacin (II) to act as an internal standard. The supernatant was injected onto a PLRP-S column without any further clean-up. The mass spectrometer was operated in positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring (MRM) mode. The assay requires 50 μl of plasma and is precise and accurate within the range 10–5000 ng/ml. The average within-run and between-run coefficients of variation were <11% at 10 ng/ml and greater concentrations. The average accuracy of validation standards was generally within ±7% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can safely be stored for at least 6 months at −20°C. The method proved very robust and was successfully applied to the analysis of clinical samples from patients dosed with gemifloxacin.  相似文献   

6.
A sensitive, specific and stability-indicating high-performance liquid chromatographic (HPLC) assay, involving pre-column derivatization and solid-phase extraction (SPE), was developed and validated for the quantitation of busulfan (BU) in aqueous and plasma samples. The linearity of the assay was in the concentration ranges of 0.15–10 μg/ml and 0.15–3 μg/ml for aqueous and plasma samples, respectively. The within-day and between-day variations were 2.90 and 3.31%, respectively, for the aqueous samples, and 9.24 and 14.56%, respectively, for the plasma samples. The overall recovery, derivatization yield and SPE efficiency of BU from plasma samples were 82.03, 108.01 and 86.69%, respectively. Forced degraded samples, either in highly acidic, neutral or basic medium, produced no interfering peaks in the chromatogram. The reported assay requires only 0.2 ml of plasma for the analysis, and its sensitivity is 150 ng/ml by monitoring samples at a wavelength of 254 nm, sufficient to study the plasma pharmacokinetics of BU in rats after a clinically relevant oral dose. Moreover, the sensitivity of the assay can be significantly increased to 30 ng/ml by monitoring samples at a wavelength of 278 nm. The applications of the assay were demonstrated with BU solubility measurements in two aqueous systems and with plasma samples from a Sprague–Dawley rat for an in vivo pharmacokinetic study. In addition, the assay has been employed in the development of a patented intravenous formulation, and in evaluations of stability, preclinical pharmacokinetics in rats and dogs, and clinical phase I trial of the formulation. The assay is readily adaptable to clinical therapeutic drug monitoring.  相似文献   

7.
A new, simple, reproducible and reliable high-performance liquid chromatography method with ultraviolet absorbance detection at 240 nm was developed and validated for the determination of 7-oxo-dehydroepiandrosterone-3β-sulfate in human plasma. The method was based upon solid-phase (C18) extraction of plasma after addition of 17β-hydroxy-3β-methoxyandrost-5-en-7-one as internal standard. Using 1 ml of plasma for extraction, the detection limit of the assay was 3 ng/ml. The standard curve was linear over the concentration range 10–1000 ng/ml. Stored at −20°C for about 4 months at various concentrations in plasma, 7-oxo-dehydroepiandrosterone-3β-sulfate did not reveal any appreciable degradation. Also included herein is a method for the simultaneous detection and determination of 7-oxo-dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone-3β-acetate in plasma.  相似文献   

8.
A sensitive and specific high-performance liquid chromatographic (HPLC) method with UV detection was developed for the determination of minocycline in human plasma and parotid saliva samples. Samples were extracted using an Oasis™ HLB cartridge and were injected into a C8 Nucleosil column. The HPLC eluent contained acetonitrile–methanol–distilled water–0.1% trifluoroacetic acid (25:2:72.9:0.1, v/v). Demeclocycline was used as internal standard. The assay showed linearity in the tested range of 0.1–25 μg/ml. The limit of quantitation was 100 ng/ml. Recovery from plasma or parotid saliva averaged 95%. Precision expressed as %CV was in the range 0.2–17% (limit of quantitation). Accuracy ranged from 93 to 111%. In the two matrices studied at 20 and 4°C, rapid degradation of the drug occurred. Frozen at −30°C, this drug was stable for at least 2 months, the percent recovery averaged 90%. The method’s ability to quantify minocycline with precision, accuracy and sensitivity makes it useful in pharmacokinetic studies.  相似文献   

9.
A sensitive (50 pg/ml) method for the determination of heptylphysostigmine in human plasma is described. The procedure is based on liquid—liquid extraction of the drug from buffered plasma, and analysis of the concentrated organic extract using high-performance liquid chromatography on a silica column, under normal-phase chromatographic conditions, with fluorescence detection. Physostigmine was used as an internal standard. The assay has been fully validated in the concentration range 50–2000 pg/ml and utilized for the analysis of clinical samples from subjects dosed with heptylphysostigmine.  相似文献   

10.
A simple and selective assay for the determination of the alkylating cyclophosphamide metabolite phosphoramide mustard (PM) in plasma was developed and validated. PM was determined after derivatisation by high-performance liquid chromatography (HPLC) with ultraviolet detection at 276 nm. Sample pre-treatment consisted of derivatisation of PM with diethyldithiocarbamate (DDTC) at 70°C for 10 min, followed by extraction with acetonitrile in the presence of 0.7 M sodium chloride. Phase separation occurred due to the high salt content of the aqueous phase. The HPLC system consisted of a C8 column with acetonitrile–0.025 M potassium phosphate buffer, pH 8.0, (32:68, v/v) as the mobile phase. The entire sample handling procedure, from collection at the clinical ward until analysis in the laboratory, was optimised and validated. Calibration curves were linear from 50 to 10 000 ng/ml. The lower limit of quantification and the limit of detection (using a signal-to-noise ratio of 3) were 50 and 40 ng/ml, respectively, using 500 μl of plasma. Within-day and between-day precisions were below 11% over the entire concentration range and the accuracies were between 100 and 106%. PM was found to be stable at −30°C for at least 10 weeks both in plasma and as a DDTC-derivative in a dry sample. A pharmacokinetic pilot study in two patients receiving 1000 mg/m2 CP in a 1-h infusion demonstrated the applicability of the assay.  相似文献   

11.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

12.
A rapid and selective high-performance liquid chromatographic assay for determination of a new antimalarial drug (benflumetol, BFL) is described. After extraction with hexane-diethyl ether (70:30, v/v) from plasma, BFL was analysed using a C18 Partisil 10 ODS-3 reversed-phase stainless steel column and a mobile phase of acetonitrile-0.1 M ammonium acetate (90:10, v/v) adjusted to pH 4.9 with ultraviolet detection at 335 nm. The mean recovery of BFL over a concentration range of 50–400 ng/ml was 96.8±5.2%. The within-day and day-to-day coefficients of variation were 1.8–4.0 and 1.8–4.2%, respectively. The minimum detectable concentration in plasma for BFL was 5 ng/ml with a C.V. of less than 10%. This method was found to be suitable for clinical pharmacokinetic studies.  相似文献   

13.
A rapid and selective high-performance liquid chromatographic assay for simultaneous quantitative determination of a new antifilarial drug (UMF-058, I) and mebendazole (MBZ) is described. After a simple extraction from whole blood, both compounds were analysed using a C18 Nova Pak reversed-phase column and a mobile phase of methanol—0.05 M ammonium dihydrogenphosphate (50:50, v/v) adjusted to pH 4.0, with ultraviolet detection at 291 nm. The average recoveries of I and MBZ over a concentration range of 25–250 ng/ml were 92.0 ± 7.7 and 84.4 ± 4.4%, respectively. The minimum detectable concentrations in whole blood for I and MBZ were 7 and 6 ng/ml, respectively. This method was found to be suitable for pharmacokinetic studies.  相似文献   

14.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

15.
16.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

17.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

18.
Dihydroergotamine, a 5-hydroxytryptamine antagonist, is used for the treatment of vascular headaches. A high-performance liquid chromatography assay with fluorescence detection is described for the determination of dihydroergotamine in plasma. The assay was validated over the concentration range 0.1–10 ng/ml plasma and applied to the analysis of plasma samples from subjects treated intramuscularly and intranasally with 2 mg of dihydroergotamine.  相似文献   

19.
A selective, accurate, precise and reproducible high-performance liquid chromatographic assay was developed for the quantitation of irbesartan, an angiotensin II antagonist, in human plasma and urine samples. The method involved solid-phase extraction of irbesartan and internal standard (I.S.) using a 100-mg Isolute CN cartridge. A portion of the eluate was injected onto an ODS analytical column connected to a fluorescence detector that was set at an excitation wavelength of 250 nm and an emission wavelength of 371 nm. The mobile phase consisted of 50% acetonitrile and a 50% weak phosphate-triethylamine solution, pH 3.5, at a flow-rate of 0.8 ml/min. The assay was linear from 1 to 1000 ng/ml with both plasma and urine. In either matrix, the lower limit of quantitation was 1 ng/ml. The analyses of quality control samples indicated that the nominal values could be predicted with an accuracy >95%. The inter- and intra-day coefficients of variation for the analyses in both matrices were <8%. Irbesartan was stable in both human plasma and urine for at least seven months at −20°C. The application of the assay to a pharmacokinetic study is described.  相似文献   

20.
The stability of the experimental anti-tumour agent pancratistatin in human plasma has been investigated. A solid-phase extraction technique and an HPLC assay with external standards have been developed and validated. Extraction was performed using C18 cartridges and HPLC, analysis was performed on a 15 cm Hypersil BDS column using isocratic elution with 13% acetonitrile and aqueous solution of 1% (w/v) acetic acid. The lower limit of quantification for pancratistatin in 5% DMF–95% water was found to be 0.58 ng/ml (±10.58%) and 2.3 ng/ml (±9.2%) following extraction from human plasma. Mean recovery of 89.4% (±4.73%) was obtained over the concentration range 0.0023–9.45 μg/ml for a five day validation study. Pancratistatin was stable at room temperature in light or dark for at least 15 days, in the refrigerator at 4°C for at least 16 days and in the freezer at −20°C or −80°C for at least 28 days. Under all conditions monitored, % recovery of pancratistatin from human plasma was greater than 95% and no evidence of degradation had occurred. There also was no loss of pancratistatin after three cycles of freezing and thawing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号