首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic analysis of cold-tolerance of photosynthesis in maize   总被引:10,自引:0,他引:10  
The genetic basis of cold-tolerance was investigated by analyzing the quantitative trait loci (QTL) of an F2:3 population derived from a cross between two lines bred for contrasting cold-tolerance using chlorophyll fluorescence as a selection tool. Chlorophyll fluorescence parameters, CO2 exchange rate, leaf greenness, shoot dry matter and shoot nitrogen content were determined in plants grown under controlled conditions at 25/22 °C or 15/13 °C (day/night). The analysis revealed the presence of 18 and 19 QTLs (LOD > 3.5) significantly involved in the variation of nine target traits in plants grown at 25/22 °C and 15/13 °C, respectively. Only four QTLs were clearly identified in both temperatures regimes for the same traits, demonstrating that the genetic control of the performance of the photosynthetic apparatus differed, depending on the temperature regime. A major QTL for the cold-tolerance of photosynthesis was identified on chromosome 6. This QTL alone explained 37.4 of the phenotypic variance in the chronic photoinhibition at low temperature and was significantly involved in the expression of six other traits, including the rate of carbon fixation and shoot dry matter accumulation, indicating that the tolerance to photoinhibition is a key factor in the tolerance of maize to low growth temperature. An additional QTL on chromosomes 2 corresponded to a QTL identified previously in another population, suggesting some common genetic basis of the cold-tolerance of photosynthesis in different maize germplasms.  相似文献   

2.
Prolonged low temperature phases and short-term cold spells often occur in spring during the crucial stages of early maize (Zea mays L.) development. The effect of low temperature-induced growth retardation at the seedling stage on final yield is poorly studied. Therefore, the aim was to identify genomic regions associated with morpho-physiological traits at flowering and harvest stage and their relationship to previously identified quantitative trait loci (QTLs) for photosynthesis and morpho-physiological traits from the same plants at seedling stage. Flowering time, plant height and shoot biomass components at harvest were measured in a dent mapping population for cold tolerance studies, which was sown in the Swiss Midlands in early and late spring in two consecutive years. Early-sown plants exhibited chilling stress during seedling stage, whereas late-sown plants grew under favorable conditions. Significant QTLs, which were stable across environments, were found for plant height and for the time of flowering. The QTLs for flowering were frequently co-localized with QTLs for plant height or ear dry weight. The comparison with QTLs detected at seedling stage revealed only few common QTLs. A pleiotropic effect was found on chromosome 3 which revealed that a good photosynthetic performance of the seedling under warm conditions had a beneficial effect on plant height and partially on biomass at harvest. However, a high chilling tolerance of the seedling seemingly had an insignificant or small negative effect on the yield.  相似文献   

3.
小麦幼苗耐热性的QTL定位分析   总被引:7,自引:0,他引:7  
以小麦DH群体(‘旱选10号’ב鲁麦14’)为材料,在高温(热胁迫)及常温(对照)两种条件下考察小麦幼苗的根干重、苗干重、幼苗生物量、叶片叶绿素含量、叶绿素荧光参数及其耐热指数,并应用基于混合线性模型的复合区间作图法分析幼苗性状及其耐热指数QTL的数量、染色体分布及表达情况,以及QTL与环境的互作效应。结果显示:(1)亲本‘旱选10号’的耐热性明显优于‘鲁麦14’,且杂交后代的耐热性出现超亲分离。(2)控制幼苗耐热相关性状的QTL位点在染色体2D、6B、3A、4A、5A和7A上分布较多,而控制幼苗性状耐热指数的QTL在染色体6A、6B、3A、2D、5A和7A上分布较多,QTL位点在染色体上的分布有区域化的趋势。(3)控制幼苗性状的单个加性QTL和上位性QTL解释的表型变异分别平均为2.48%和2.65%;而控制耐热指数的单个加性QTL和上位性QTL解释的表型变异分别平均为8.84%和1.98%。(4)在热胁迫和对照条件下共检测到与幼苗性状及其耐热指数有关的加性效应QTL 13个和上位性效应QTL 28对,分布在除4D和6D以外的19条染色体上。研究表明,控制幼苗性状的QTL以上位性效应为主,而其耐热指数的QTL以加性效应为主。  相似文献   

4.
The effects of low growth temperature (15 degrees C) on the photosynthetic apparatus of maize were investigated in a set of 233 recombinant inbred lines by means of chlorophyll fluorescence, gas exchange measurements and analysis of photosynthetic pigments. A quantitative trait loci (QTL) analysis of five traits related to the functioning of the photosynthetic apparatus revealed a total of eight genomic regions that were significantly involved in the expression of the target traits. Four of these QTLs, located on chromosomes 1 (around 146 cM), 2 (around 138 cM), 3 (around 70 cM), and 9 (around 62 cM), were identified across several traits and the phenotypic correlation observed among those traits confirmed at the genetic level. The two QTLs on chromosomes 1 and 9 were also expressed in leaves developed at near-optimal temperature (25 degrees C) whilst the two QTLs on chromosomes 2 and 3 were specific to leaves developed at sub-optimal temperature. A QTL analysis conducted on traits related to the pigment composition of the leaves developed at 15 degrees C detected the QTL on chromosome 3 around 70 cM in 7 of the 11 traits analysed. This QTL accounted for up to 28% of the phenotypic variance of the quantum yield of electron transport at PSII in the fourth leaf after about 3 weeks at a sub-optimal temperature. The results presented here suggest that key gene(s) involved in the development of functional chloroplasts of maize at low temperature should be located on chromosome 3, close to the centromere.  相似文献   

5.
Leaf temperature has been shown to vary when plants are subjected to water stress conditions. Recent advances in infrared thermography have increased the probability of recording drought tolerant responses more accurately. The aims of this study were to identify the effects of drought on leaf temperature using infrared thermography. Furthermore, the genomic regions responsible for the expression of leaf temperature variation in maize seedlings (Zea mays L.) were explored. The maize inbred lines Zong3 and 87-1 were evaluated using infrared thermography and exhibited notable differences in leaf temperature response to water stress. Correlation analysis indicated that leaf temperature response to water stress played an integral role in maize biomass accumulation. Additionally, a mapping population of 187 recombinant inbred lines (RILs) derived from a cross between Zong3 and 87-1 was constructed to identify quantitative trait loci (QTL) responsible for physiological traits associated with seedling water stress. Leaf temperature differences (LTD) and the drought tolerance index (DTI) of shoot fresh weight (SFW) and shoot dry weight (SDW) were the traits evaluated for QTL analysis in maize seedlings. A total of nine QTL were detected by composite interval mapping (CIM) for the three traits (LTD, RSFW and RSDW). Two co-locations responsible for both RSFW and RSDW were detected on chromosomes 1 and 2, respectively, which showed common signs with their trait correlations. Another co-location was detected on chromosome 9 between LTD and shoot biomass, which provided genetic evidence that leaf temperature affects biomass accumulation. Additionally, the utility of a thermography system for drought tolerance breeding in maize was discussed.  相似文献   

6.
苗圃科学施氮(N)作为提高苗木N贮存水平与质量的核心手段,能否提高干旱立地苗木造林效果仍存在争议;N贮存水平与干旱如何协同作用影响叶片光合N分配及苗木生物量积累尚不明确。阐明上述问题,能够为干旱立地下的森林植被恢复以及造林苗木科学精准施N提供科学依据。选择栓皮栎(Quercus variabilis Blume)为研究对象,对一年生苗木设置2个苗圃木质化期N加载水平(0、24 mg N/株),翌年春苗木移栽后设置2个灌溉水平(85%、40%田间持水量),取样测定苗木生物量、叶片N、叶绿素与脯氨酸水平、以及气体交换参数,计算光合N分配及光合N利用效率(PNUE)。结果表明,叶片发育完成后,干旱抑制N向光合系统分配,但N加载处理提高了干旱下的光合N含量,从而在一定程度上抵消干旱对生物量积累的抑制;无N加载苗木则向光合系统投入更少的N,而提高脯氨酸水平,生物量积累受抑制更为显著。无N加载苗木在遭受干旱后将N向羧化组分分配,而N加载苗木遭遇干旱后则显著抑制叶片将N向羧化系统以及电子传递系统分配,捕光组分N的分配则不受植物体内N贮存或外部水分状况的影响,栓皮栎苗木通过调整不同功能组分光合N含量和...  相似文献   

7.
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. Genetic dissection of leaf mineral accumulation and tolerance to Zn stress is important for the improvement of the nutritional quality of Chinese cabbage by breeding. A mapping population with 183 doubled haploid (DH) lines was used to study the genetics of mineral accumulation and the growth response to Zn. The genetic map was constructed based on 203 AFLPs, 58 SSRs, 22 SRAPs and four ESTPs. The concentration of 11 minerals was determined in leaves for 142 DH lines grown in an open field. In addition shoot dry biomass (SDB) under normal, deficient and excessive Zn nutritional conditions were investigated in hydroponics experiments. Ten QTLs, each explaining 11.1–17.1% of the Na, Mg, P, Al, Fe, Mn, Zn and Sr concentration variance, were identified by multiple-QTL model (MQM) mapping. One common QTL was found affecting SDB under normal, deficient and excessive Zn nutritional conditions. An additional QTL was detected for SDB under Zn excess stress only. These results offer insights into the genetic basis of leaf mineral accumulation and plant growth under Zn stress conditions in Chinese cabbage.  相似文献   

8.
Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of hybrid poplar plants were not affected by scrubber by-product applications of up to 5% w:w.  相似文献   

9.
The objective of this study was to map QTLs for N uptake (NUP) in wheat, and to investigate factors influencing NUP. Two independent field trials with low N (LN) and high N (HN) treatments were conducted in the growing seasons of 2002–2003 (trial 1) and 2003–2004 (trial 2) to measure NUP per plant (N accumulated in the aerial part at maturity stage) of a doubled haploid (DH) population consisting of 120 DH lines derived from winter wheat varieties Hanxuan 10 and Lumai 14. A hydroponic culture with all nutrients supplied sufficiently was conducted to investigate shoot dry weight (SDW), root dry weight (RDW), tiller number (TN) and NUP (total plant N uptake) per plant of this mapping population at seedling stage. SDW, RDW, TN and NUP investigated in the hydroponic culture were significantly and positively correlated with each other, and with NUP under both LN and HN conditions in the field trials. Nine and eight QTLs for NUP were detected under LN and HN conditions in the field trials, respectively. Four to five QTLs for SDW, RDW, TN and NUP were detected in the hydroponic culture. One SDW QTL, three RDW QTLs, two TN QTLs detected in the hydroponic culture were linked with QTLs for NUP under LN or HN condition in the field trials. The positive correlation and genetic linkage for the traits between the field trials and the hydroponic culture demonstrated that greater seedling vigor of root and shoot is an important factor influencing N uptake in wheat. Diaoguo An and Junying Su: These authors contributed equally to this work. Section Editor: H.J. Kronzucker  相似文献   

10.
Phosphorous (P) deficiency is a major restraint factor for crop production and plants have developed several mechanisms to adapt to low P stress. In this study, a set of 271 introgression lines (ILs) were used to characterize the responses of seedlings to low P availability and to identify QTLs for root traits, biomass, and plant height under P-deficiency and P-sufficiency conditions. Plant height, total dry weight, shoot dry weight, and root number were inhibited under P-deficiency, whereas maximum root length (MRL) and root-shoot ratio (RS) were induced by P-deficiency stress. Relative MRL (RMRL, the ratio of MRL under P-deficiency to MRL under P-sufficiency con- dition) and relative RS (RRS) were used to evaluate P-deficiency tolerance at the seedling stage. A total of 24 additive QTLs and 29 pairs of epistatic QTLs were detected, but only qRN4 was detected in both conditions. This suggested that different mechanisms may exist in both P supply levels. QTLs for adaptive traits (RMRL, RRS, RRV, and RRDW) and qRN4 consistently expressed to increase trait stability may contribute to P-deficiency tolerance. Twelve intervals were cluster regions of QTLs for P-deficiency tolerance, and one QTL (qRRSS) showed pleiotropic effects on P-deficiency tolerance and drought tolerance. These interesting QTLs can be used in marker-assisted breeding through the target ILs.  相似文献   

11.
This research was undertaken to identify and map quantitative trait loci (QTLs) associated with five parameters of rice root morphology and to determine if these QTLs are located in the same chromosomal regions as QTLs associated with drought avoidance/tolerance. Root thickness, root:shoot ratio, root dry weight per tiller, deep root dry weight per tiller, and maximum root length were measured in three replicated experiments (runs) of 203 recombinant inbred lines grown in a greenhouse. The lines were from a cross between indica cultivar Co39 andjaponica cultivar Moroberekan. The 203 RI lines were also grown in three replicated field experiments where they were drought-stressed at the seedling, early vegetative, and late-vegetative growth stage and assigned a visual rating based on leaf rolling as to their degree of drought avoidance/tolerance. The QTL analysis of greenhouse and field data was done using single-marker analysis (ANOVA) and interval analysis (Mapmaker QTL). Most QTLs that were identified were associated with root thickness, root/shoot ratio, and root dry weight per tiller, and only a few with deep root weight. None were reliably associated with maximum root depth due to genotype-by-experiment interaction. Root thickness and root dry weight per tiller were the characters found to be the least influenced by environmental differences between greenhouse runs. Correlations of root parameters measured in greenhouse experiments with field drought avoidance/tolerance were significant but not highly predictive. Twelve of the fourteen chromosomal regions containing putative QTLs associated with field drought avoidance/tolerance also contained QTLs associated with root morphology. Thus, selecting for Moroberekan alleles at marker loci associated with the putative root QTLs identified in this study may be an effective strategy for altering the root phenotype of rice towards that commonly associated with drought-resistant cultivars.  相似文献   

12.
The variation of seedling characteristics under different water supply conditions is strongly associated with drought resistance in rice (Oryza sativa L.) and a better elucidation of its genetics is helpful for improving rice drought resistance. Ninety-six doubled-haploid (DH)rice lines of an indica and japonica cross were grown in both flooding and upland conditions and QTLs for morphological traits at seedling stage were examined using 208 restriction fragment length polymorphism (RFLP) and 76 microsatellite (SSR) markers. A total of 32 putative QTLs were associated with the four seedling traits: average of three adventitious root lengths (ARL), shoot height (SH), shoot biomass (SW), and root to shoot dry weight ratio (RSR). Five QTLs detected were the same under control and upland conditions. The ratio between the mean value of the seedling trait under upland and flooding conditions was used for assessing drought tolerance. A total of six QTLs for drought tolerance were detected. Comparative analysis was performed for the QTLs detected in this case and those reported from two other populations with the same upland rice variety Azucena as parent. Several identical QTLs for seedling elongation across the three populations with the positive alleles from the upland rice Azucena were detected, which suggests that the alleles of Azucena might be involved in water stress-accelerated elongation of rice under different genetic backgrounds. Five cell wall-related candidate genes for OsEXP1, OsEXP2, OsEXP4, EXT, and EGase were mapped on the intervals carrying the QTLs for seedling traits.  相似文献   

13.
Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean.  相似文献   

14.
Post-anthesis photoassimilation is very important for wheat (Triticum aestivum L.) grain filling. The aim of the present study was to map quantitative trait loci (QTL) for post-anthesis dry matter accumulation (DMA). A set of 120 doubled haploid (DH) lines, derived from winter wheat varieties Hanxuan 10 and Lumai 14, was grown under field conditions in two consecutive growing seasons during 2002-2004 in Beijing. Post-anthesis DMA per culm and related traits, including flag leaf greenness (FLG) and flag leaf weight (FLW; dry weight per flag leaf) at flowering, and grain weight per ear (GWE) were investigated. All traits segregated continuously in the DH population in both trials. The DMA was significantly and positively correlated with GWE, with the correlation coefficients being 0.79 and 0.66 in the 2002-2003 and 2003-2004 growing seasons (both P〈0.01), suggesting the importance of DMA in grain filling. Further correlation analysis showed that FLW was more closely correlated with DMA and GWE than FLG in both growing seasons, indicating that FLW was more important than FLG in influencing DMA and GWE. In total, 30 QTLs for these four traits were mapped and distributed on 10 chromosomes. Phenotypic variations explained by an individual QTL were in the range 5.8%-21.3%, 5.9%-17.2%, 5.1%-18.1%, and 5.6%-16.2% for FLG, FLW, DMA, and GWE, respectively. Eight QTLs for DMA were detected, of which four (on chromosome arms 2AS, 4BL, 5AS, and 7AS) were linked with QTLs for GWE; two (on chromosome arms 5BL and 7BL) coincided with QTLs for FLW. These results may provide useful information for developing marker-assisted selection for the improvement of DMA.  相似文献   

15.
Photosynthesis is fundamental to biomass production, but sensitive to drought. To understand the genetics of leaf photosynthesis, especially under drought, upland rice cv. Haogelao, lowland rice cv. Shennong265, and 94 of their introgression lines (ILs) were studied at flowering and grain filling under drought and well-watered field conditions. Gas exchange and chlorophyll fluorescence measurements were conducted to evaluate eight photosynthetic traits. Since these traits are very sensitive to fluctuations in microclimate during measurements under field conditions, observations were adjusted for microclimatic differences through both a statistical covariant model and a physiological approach. Both approaches identified leaf-to-air vapour pressure difference as the variable influencing the traits most. Using the simple sequence repeat (SSR) linkage map for the IL population, 1-3 quantitative trait loci (QTLs) were detected per trait-stage-treatment combination, which explained between 7.0% and 30.4% of the phenotypic variance of each trait. The clustered QTLs near marker RM410 (the interval from 57.3?cM to 68.4?cM on chromosome 9) were consistent over both development stages and both drought and well-watered conditions. This QTL consistency was verified by a greenhouse experiment under a controlled environment. The alleles from the upland rice at this interval had positive effects on net photosynthetic rate, stomatal conductance, transpiration rate, quantum yield of photosystem II (PSII), and the maximum efficiency of light-adapted open PSII. However, the allele of another main QTL from upland rice was associated with increased drought sensitivity of photosynthesis. These results could potentially be used in breeding programmes through marker-assisted selection to improve drought tolerance and photosynthesis simultaneously.  相似文献   

16.
选择毛乌素沙地优势灌木中间锦鸡儿为研究对象,人为控制4种降水量水平来测定中间锦鸡儿幼苗的形态,。生物量干重,气体交换和叶绿素荧光参数,结果表明,不同施水量显著影响幼苗株高,基径,叶数,叶面积,生物量干重,净光合速率,蒸腾速率,气孔导度以及水分利用效率,157.5mm和630mm施水的幼苗以上参数显著低于472.5mm施水的幼苗,157.5mm和630mm施水量的幼苗PSIII光化学效率和最大荧光与初始荧光比显著小于472.5mm施水量的幼苗;不同施水量对幼苗生物量干重分配有显著影响;随着施水量增加,根冠生物量干重比显著减少。  相似文献   

17.
A strong photosynthetic performance and rapid leaf development, are important indicators of vigorous early growth. The aim of this study was to (1) evaluate the tropical maize (Zea mays L.) inbred lines CML444 and SC-Malawi for their photosynthetic performance at different growth stages and (2) assess quantitative trait loci (QTL) of photosynthesis-related traits in their 236 recombinant inbred lines at the heterotrophic growth stage. CML444 had a higher leaf chlorophyll (SPAD) content than SC-Malawi. Ten QTLs were found for the quantum efficiency of photosystem II (ΦPSII; four), SPAD (three) and the specific leaf area (SLA; three). The relevance of seedling QTLs for ΦPSII, SPAD and SLA for yield formation is emphasized by seven collocations (bins 5.01, 7.03, 8.05) with QTLs for kernel number and grain yield under field conditions. QTLs for SPAD at the V2 and at the reproductive stage did not collocate, indicating differences in the genetic control of SPAD at different growth stages. Knowing which loci affect SLA, SPAD and ΦPSII simultaneously and which do not will help to optimize light harvest by the canopy.  相似文献   

18.
As a basis for genetic improvement of willow (Salix spp.) for use in wood biomass production, quantitative trait loci (QTLs) responsible for resistance to herbivores have been identified in a tetraploid hybrid F2 population originating from a cross between Salix dasyclados (Wimm.) and Salix viminalis (L.) (Salicaceae). Symptoms of herbivory, caused by various insects and game, and, in addition, leaf rust, were assessed in three field locations with varying soils and climates. Eleven damage traits (lost leaf area, leaf discoloration, leaf blisters, leaf‐mite symptoms, leaf‐margin cuts, and various estimates of shoot‐tip damage by a gall midge, game, and lepidopterans) were submitted to QTL analysis. A composite interval mapping approach was used to estimate the number of QTLs, the magnitude of the QTLs, and their position on genetic linkage maps. Most of the identified QTLs were specific for each trait and location, but a few QTLs common across the locations were also detected. Each QTL explained between 8 and 24% of the phenotypic variation, depending on damage trait and field location. Clusters of QTLs for different traits were found at several linkage groups, indicating either a common genetic base or tightly linked QTL. Our results emphasize the need for verification of QTL studies over different environments.  相似文献   

19.
The quantitative trait loci (QTLs) associated with arsenic (As) accumulation in rice were mapped using a doubled haploid population established by anther culture of F1 plants from a cross between a Japonica cultivar CJ06 and an Indica cultivar TN1 (Oryza sativa). Four QTLs for arsenic (As) concentrations were detected in the map. At the seedling stage, one QTL was mapped on chromosome 2 for As concentrations in shoots with 24.4% phenotypic variance and one QTL for As concentrations in roots was detected on chromosome 3. At maturity, two QTLs for As concentrations in grains were found on chromosomes 6 and 8, with 26.3 and 35.2% phenotypic variance, respectively. No common loci were detected among these three traits. Interestingly, the QTL on chromosome 8 was found to be colocated for As concentrations in grain at maturity and shoot phosphorus (P) concentrations at seedling stage. These results provide an insight into the genetic basis of As uptake and accumulation in rice, and will be useful in identifying genes associated with As accumulation.  相似文献   

20.
This study was conducted to identify physiological traits associated with cold tolerance in sunflower and to identify the genomic regions involved in their variation. A population of 98 recombinant inbred lines (RILs) and their two parents were sown in the field as usual sowing date (control) and one or two months earlier (long-term low temperature treatments). A trait commonly used to underlying cold tolerance related to the degree of membrane damage, as well as traits associated with growth capacity (chlorophyll content, potential photochemical efficiency of photosystem II and plant dry weight) and finally those reflecting acclimation mechanism to stress conditions (osmotic potential at full turgor, and specific leaf area) have been investigated at early development stages. Significant differences were observed among the three sowing dates for all traits. Chlorophyll content and specific leaf area are genetically associated with cold tolerance. Genetic gains were observed for chlorophyll content and osmotic potential traits in some of early sowing dates, which suggest that they could be used for cold tolerance in breeding programs. QTL analyses show that several putative genomic regions are involved in the variation of the physiological traits studied under low temperature. Major QTLs for cold tolerance associated with SSR markers such as ORS331_2 for the cell membrane stability should be checked in several environments to see if they can be used in marker-assisted selection programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号