首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used transgenic mouse technology to establish immortalized hepatoma cell lines stably secreting heterologous proteins, such as human α1-antitrypsin and human factor IX. Hepatocyte-specific regulatory DNA sequences were used to target both the expression of anonc gene and the gene coding for the human protein to the liver of transgenic mice which eventually developed hepatocellular carcinomas. Tumour cells were subsequently established as permanent cell lines, which maintained a differentiated phenotype under specific culture conditions, being capable of producing biologically active and correctly processed human α1-antitrypsin and factor IX. Moreover, a preliminary analysis has shown that certain cell lines express elevated total cytochrome P450 activity. These cells could therefore represent a useful alternative to the use of animals or primary cultures in drug safety testing.  相似文献   

2.
We previously developed the bio-nanocapsule, which consists of hepatitis B virus envelope L proteins. The bio-nanocapsule can be used to deliver genes and drugs specifically to the human liver-derived tissues in xenograft models, presumably by utilizing the human liver-specific mechanism of hepatitis B virus infection. The hepatitis B virus tropism is highly restricted to humans and higher primates. Thus, to evaluate the in vivo therapeutic effects of forthcoming bio-nanocapsule-based medicines, it will be crucial to develop an animal model whose liver is susceptible to both bio-nanocapsule and hepatitis B virus. In the present study, we aimed to establish a bio-nanocapsule-susceptible animal model using transgenic rats expressing squamous cell carcinoma antigen-1 (SCCA1), which has been proposed to be a receptor for hepatitis B virus, interacting with the hepatitis B virus envelope protein and enhancing the cellular uptake of hepatitis B virus. We show that the recombinant SCCA1 protein interacts directly with bio-nanocapsule and inhibits its attachment to the cultured human liver-derived cells. Furthermore, we have established a transgenic rat that specifically expresses SCCA1 in the liver and also demonstrate that the amount of bio-nanocapsule accumulated in the liver is significantly increased by the SCCA1 expression. Histological analysis suggests that bio-nanocapsule is preferentially incorporated into the SCCA1-expressing hepatocytes but not into macrophages, such as Küppfer cells, nor into endothelial cells. Therefore, this animal model is expected to be useful for the development of bio-nanocapsule-based medicines.  相似文献   

3.
Recombinant adeno-associated virus (rAAV) vectors allow for sustained expression of transgene products from mouse liver following a single portal vein administration. Here a rAAV vector expressing human coagulation factor F.IX (hF.IX), AAV-EF1alpha-F.IX (hF.IX expression was controlled by the human elongation factor 1alpha [EF1alpha] enhancer-promoter) was injected into mice via the portal vein or tail vein, or directly into the liver parenchyma, and the forms of rAAV vector DNA extracted from the liver were analyzed. Southern blot analyses suggested that rAAV vector integrated into the host genome, forming mainly head-to-tail concatemers with occasional deletions of the inverted terminal repeats (ITRs) and their flanking sequences. To further confirm vector integration, we developed a shuttle vector system and isolated and sequenced rAAV vector-cellular DNA junctions from transduced mouse livers. Analysis of 18 junctions revealed various rearrangements, including ITR deletions and amplifications of the vector and cellular DNA sequences. The breakpoints of the vector were mostly located within the ITRs, and cellular DNA sequences were recombined with the vector genome in a nonhomologous manner. Two rAAV-targeted DNA sequences were identified as the mouse rRNA gene and the alpha1 collagen gene. These observations serve as direct evidence of rAAV integration into the host genome of mouse liver and allow us to begin to elucidate the mechanisms involved in rAAV integration into tissues in vivo.  相似文献   

4.
5.
A bio-nanocapsule (BNC), composed of the surface antigen (sAg) of the hepatitis B virus, is an efficient nanomachine with which to accomplish the liver-specific delivery of genes and drugs. Approximately 110 molecules of sAg are associated to form a BNC particle with an average diameter of 130 nm. The L protein is an sAg peptide composed mainly of preS and S regions. The preS region, with specific affinity for human hepatocytes, is localized in the N-terminus. The S region following the preS has two transmembrane regions responsible for the formation of particles. In this study, the fusion of emerald green fluorescent protein (EGFP) at the C-terminus of the S region was designed to deliver proteins to human hepatocytes. Truncation of the C-terminus of the S region was required to obtain sufficient expression levels in Cos7 cells. The nanoparticles that were produced delivered EGFP to human hepatoma cells, displaying the EGFP moiety outside, or enclosing it inside. However, only a single orientation characterizes the particle, so that either type of L fusion particle could be effectively and independently separated by an antibody affinity column. The dual C-terminal topologies of the L fusion particles designed in this study could be applied to various proteins for the C-terminal moiety of the L fusion proteins, depending on the character of the proteins, such as cytoplasmic proteins, as well as cytokines or ligands to cell surface receptors. We suggest that this fusion design is the most efficient way to prepare a BNC that delivers proteins to specific cells or tissues.  相似文献   

6.
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3′ untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.  相似文献   

7.
The hepatitis B surface antigen (HBsAg) has the unique property of assembling with cellular lipids into spherical or elongated particles of 22 nm diameter which are secreted by mammalian cells expressing HBsAg. We have studied the structural requirements for particle formation and secretion by creating in-phase insertions into different regions of the S gene of the hepatitis B virus, coding for HBsAg. Modified genes were integrated into an appropriate vector and expressed in mouse L cells. Various single and double inserts in the two major hydrophilic domains of HBsAg were compatible with particle synthesis and secretion. The level of secretion was influenced by the length of the insert, its primary structure, and the site of insertion into the HBsAg molecule. One of the inserted sequences was a synthetic DNA fragment encoding a continuous type 1 poliovirus neutralization epitope (the C3 epitope). Mammalian cells expressing the modified hepatitis B virus S gene secreted hybrid particles carrying the poliovirus antigen. The hybrid polio-HBsAg particles reacted with a monoclonal antibody specific for the C3 epitope and induced poliovirus neutralizing antibodies at low, but significant, titers in mice and at high titers in rabbits. However, the immune response to HBsAg was weaker to hybrid particles than to unmodified HBsAg particles. By cotransfection with two different plasmids carrying either modified or unmodified genes, we obtained phenotypically mixed particles containing both polio-HBsAg and HBsAg molecules. Inoculated into rabbits, the mixed particles induced high antibody titers against both poliovirus and HBsAg.  相似文献   

8.
A mutant human factor IX with arginine at 338 residual changed to alanine (hFIXR338A) by site-directed mutagenesis was introduced into AAV vectors, and a recombinant adeno-associ-ated viral vector containing hFIXR338A, prepared by rHSV/AAV hybrid helper virus system, was directly introduced to the hind leg muscle of factor IX knock out mice. The expression and the biological activity of human factor IX mutant, hFIXR338A, and the immune response against it in the treated mice were assayed and detected. The results showed that (i) the high-level expression of human factor IX mutant protein, hFIXR338A, has been detected in rAAV-hFIXR338A treated hemophilia B mice and lasted more than 15 weeks; (ii) the clotting activity of hFIXR338A in plasma is 34.2%± 5.23%, which is remarkably higher than that of (14.27%±3.4%) of wild type hFIX treated mice in the activated partial thromboplastin assay; (iii) immune response against factor IX R338A was absent, with no factor IX mutant protein (hFIXR338A) inhibitors deve  相似文献   

9.
A mutant human factor IX with arginine at 338 residual changed to alanine (hFIXR338A) by site-directed mutagenesis was introduced into AAV vectors, and a recombinant adeno-associ- ated viral vector containing hFIXR338A, prepared by rHSV/AAV hybrid helper virus system, was directly introduced to the hind leg muscle of factor IX knock out mice. The expression and the biological activity of human factor IX mutant, hFIXR338A, and the immune response against it in the treated mice were assayed and detected. The results showed that (i) the high-level expression of human factor IX mutant protein, hFIXR338A, has been detected in rAAV-hFIXR338A treated hemophilia B mice and lasted more than 15 weeks; (ii) the clotting activity of hFIXR338A in plasma is 34.2%± 5.23%, which is remarkably higher than that of (14.27% ± 3.4%) of wild type hFIX treated mice in the activated partial thromboplastin assay; (iii) immune response against factor IX R338A was absent, with no factor IX mutant protein (hFIXR338A) inhibitors development in the treated mice; and (iv) no local or systemic side-effects and toxicity associated with the gene transfer were found. It demonstrated the potential use of treating hemophilia B by recombinant adeno-associated viral vectors with mutant hFIXR338A gene, an alternative strategy for hemophilia B gene therapy to wild-type human factor IX.  相似文献   

10.
11.
Hamada T  Kurachi S  Kurachi K 《PloS one》2010,5(9):e12971

Background

In the ASE/AIE-mediated genetic mechanism for age-related gene regulation, a recently identified age-related homeostasis mechanism, two genetic elements, ASE (age-related stability element) and AIE (age-related increase element as a stem-loop forming RNA), play critical roles in producing specific age-related expression patterns of genes.

Principal Finding

We successfully identified heterogeneous nuclear ribonucleoprotein A3 (hnRNP A3) as a major mouse liver nuclear protein binding to the AIE-derived RNAs of human factor IX (hFIX) as well as mouse factor IX (mFIX) genes. HnRNP A3 bound to the AIE RNA was not phosphorylated at its Ser359, while hnRNP A3 in the mouse liver nuclear extracts was a mixture of phosphorylated and unphosphorylated Ser359. HepG2 cells engineered to express recombinant hFIX transduced with adenoviral vectors harboring an effective siRNA against hnRNP A3 resulted in a substantial reduction in hFIX expression only in the cells carrying a hFIX expression vector with AIE, but not in the cells carrying a hFIX expression vector without AIE. The nuclear hnRNP A3 protein level in the mouse liver gradually increased with age, while its mRNA level stayed age-stable.

Conclusions

We identified hnRNP A3 as a major liver nuclear protein binding to FIX-AIE RNA. This protein plays a critical role in age-related gene expression, likely through an as yet unidentified epigenetic mechanism. The present study assigned a novel functional role to hnRNP A3 in age-related regulation of gene expression, opening up a new avenue for studying age-related homeostasis and underlying molecular mechanisms.  相似文献   

12.
A mouse cDNA probe homologous to the human MCF2 transforming sequence has been identified and partially cloned, and is used here to localize the gene on the mouse X chromosome. The human gene has been physically mapped to within 60 kb of the gene for coagulation factor IX, within a large conserved linkage group between the mouse and human genomes which extends from HPRT to G6PD on the X chromosomes of both mammalian species. In situ hybridization of the mouse Mcf-2 probe onto mouse metaphase chromosomes indicates that this gene lies in the same region of the X chromosome as Cf-9, the mouse gene for coagulation factor IX. Moreover, segregation of species-specific genomic DNA polymorphisms for Mcf-2 and Cf-9 in a total of 203 individuals derived from two large interspecific mouse backcross populations (which are also segregating for 17 other X-linked molecular markers) demonstrates that the mouse genes are separated by only 0.5 +/- 0.5 cM. Despite this short distance we were able to order Mcf-2 and Cf-9 relative to one another and other genes in this region. The mouse gene order Hprt-Cf-9-Mcf-2-G6pd predicts a similar ordering of genes on the human X chromosome, a gene order which has only recently been demonstrated by physical mapping. Thus, the map location and linkage relationships of the Mcf-2 gene are similar in man and mouse, and this unique protooncogenic locus is part of a conserved linkage group on the mammalian X chromosome.  相似文献   

13.
Bionanocapsules (BNCs) are hollow nanoscale particles composed of L protein of the hepatitis B virus surface antigen that represent specific affinity for human hepatocytes. BNCs can transfer genes and drugs into human hepatocytes efficiently and specifically. BNC can be expressed in yeast cells. In this study, we developed a new L particle production system using a stably transfected insect cell line. For this purpose, we established a host–vector system using the Trichoplusia ni insect cell line. L particles were efficiently secreted by the overexpression of the L protein, which was fused to the secretion signal peptide. The concentration of L particles was reached approximately 1.7 μg/ml in 5 days during cultivation in a serum-free medium without antibiotic selective pressure. The production of L particles was maintained for at least 75 days. The secretory production of L particles facilitated their easy purification by chromatography. Furthermore, it was demonstrated that purified L particles can transfect only human hepatocytes. Therefore, an insect cell expression system is an attractive tool for the production of BNC.  相似文献   

14.
15.
We demonstrate that vectors incorporating components from Epstein-Barr virus (EBV) for retention and from human genomic DNA for replication greatly enhance the level and duration of marker gene expression in dividing cultured cells. The same types of vectors were tested in vivo by high-pressure tail vein injection of naked DNA in mice, resulting in liver delivery and expression. The therapeutic gene was a human factor IX (hFIX) minigene comprising genomically derived 5', 3', and intronic sequences that provided relatively good gene expression in vivo. We demonstrated that addition of the EBV EBNA1 gene and its family of repeats binding sites provided a 10- to 100-fold increase in prolonged hFIX expression in mouse liver. A single 25-microg dose of vector DNA generated normal (>5 microg/mL) levels of hFIX throughout the 8 month duration of the experiment. Vector DNA with or without the EBV sequences was retained in liver cells, and vector replication was not a factor in these nondividing liver cells. Instead, it appears that enhancement of stable hFIX expression by the EBV components was responsible for the increased level and duration of therapeutic gene expression. The EBV sequences also significantly enhanced stable expression of a vector carrying the full genomic hFIX gene delivered to mouse liver. These results underline the crucial importance of appropriate gene expression signals on gene therapy vectors and the utility of EBV sequences in particular for increasing stable gene expression.  相似文献   

16.
Persistent infection by hepatitis B virus (HBV) is epidemiologically correlated with the prevalence of hepatocellular carcinoma, but its role in tumor development is not yet understood. To study the putative oncogenic potential of HBV, a non-malignant immortal mouse hepatocyte line FMH202 harboring metallothionein promoter-driven simian virus 40 large tumor antigen was transfected with HBV DNA. All stably transfected clones which replicated HBV displayed malignant growth characteristics in soft agar and were tumorigenic upon inoculation in nude mice. The nude mice tumors were histologically classified as differentiated or anaplastic hepatocellular carcinomas. As with human liver carcinomas, rearrangements of in vitro integrated HBV sequences were observed in the nude mouse tumors, and in tumor-derived cell lines. In one case, expression of viral core and surface antigens was blocked in the tumors, correlating with hypermethylation of the HBV genome. However, the expression of X gene was maintained in most tumors and tumor-derived cell lines. X protein was detected in nuclei by immune fluorescence and by immune blot. These results provide the first demonstration that HBV displays oncogenic potential in an experimental system. This system could be useful to functionally identify HBV genes which convey a tumorigenic phenotype.  相似文献   

17.
The efficacy of recombinant adeno-associated virus (AAV) vector to deliver and express human blood clotting factor IX (hFIX) gene in skeletal muscle of coagulation factor IX deficiency mouse strain (FactorIX-knockout) is evaluated. The muscle creatine kinase enhancer (MCK) and β-actin promoter (βA) were used to drive the hFIX minigene (hFIXml), which was flanked by AAV inverted terminal repeats (ITRs). Following intramuscular injection of high titer (2.5 × 1011 vector genomes/mL) of rAAV, increased hFIX expression (256 ng/mL of plasma) was achieved. The time course of hFIX expression demonstrated that the expression level gradually increased over a period of two weeks before anti-hFIX antibodies developed in mouse circulating plasma. Those results provided a promising evidence that rAAV-mediated gene transfer and skeletal muscle-specific expression of hFIX is a feasible strategy for treating patients for hemophilia B.  相似文献   

18.
血友病B是凝血IX因子(hFIX)缺乏所导致的一种出血性疾病,通过输血和hFIX浓缩剂进行治疗疗效显著,但存在治疗费用高和安全隐患,因而获得安全、廉价的人凝血IX因子对血友病B治疗具有重要意义。植物系统表达外源蛋白在生产成本和安全性方面具有优势。为此,本研究构建含人凝血IX因子基因(hFIX,2.8kb)植物双元表达载体p35s-2300::gus::noster,用农杆菌介导法转化烟草 "百日红",通过PCR和Southern blot分析证实获得4株独立转基因植株, hFIX在转基因烟草基因组中的拷贝数为1-4个;RT-PCR和ELISA检测结果表明,hFIX在转录和翻译水平已成功表达,hFIX在转基因烟草叶片中的表达量为2.5~8.8ng/g·FW,并具有免疫活性。本研究为利用植物系统表达hFIX的后续研究作了必要准备,也为利用植物系统表达其他药用蛋白研究提供了一些理论和实验参考。  相似文献   

19.
The latest experimental data on the role of viruses in the origin of human tumors are discussed. This group of viruses consists of T-cell leukemia virus type 1 (HTLV 1), herpes viruses (HHV 8 and Epstein-Barr virus), hepatitis B virus, and human papilloma viruses. The most typical feature of this group of viruses is a very long latent period from the initial infection to the development of the disease that varies between 10 and 40 years. The mechanism of malignant cell conversion is specific for each viral type but is mainly associated with a disruption of functions of cellular genes participating in the control of cell division and proliferation. It can be a direct inactivation of tumor suppressor genes by their interaction with viral gene products (papilloma viruses), or a trans-activation of cellular genes modulating cell proliferation by viral gene products (hepatitis B virus and HTLV 1). Viruses play an initiative role and additional genetic changes in the genome of infected cells are necessary for complete expression of the oncogenic potential of the viral genes. Only these cells will give rise to a monoclonal cell population with uncontrolled proliferation. New approaches for the creation of vaccines against cancers associated with hepatitis B virus and papilloma viruses (hepatocellular carcinomas and cervical tumors, respectively) are in progress. These vaccines have been found to be effective in prevention of the disease in the experimental models and are now beginning to be used for human vaccination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号