首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shelly M  Cancedda L  Lim BK  Popescu AT  Cheng PL  Gao H  Poo MM 《Neuron》2011,71(3):433-446
Semaphorin 3A (Sema3A) is a secreted factor known to guide axon/dendrite growth and neuronal migration. We found that it also acts as a polarizing factor for axon/dendrite development in cultured hippocampal neurons. Exposure of the undifferentiated neurite to localized Sema3A suppressed its differentiation into axon and promoted dendrite formation, resulting in axon formation away from the Sema3A source, and bath application of Sema3A to polarized neurons promoted dendrite growth but suppressed axon growth. Fluorescence resonance energy transfer (FRET) imaging showed that Sema3A elevated the cGMP but reduced cAMP and protein kinase A (PKA) activity, and its axon suppression is attributed to the downregulation of PKA-dependent phosphorylation of axon determinants LKB1 and GSK-3β. Downregulating Sema3A signaling in rat embryonic cortical progenitors via in utero electroporation of siRNAs against the Sema3A receptor neuropilin-1 also resulted in polarization defects in?vivo. Thus, Sema3A regulates the earliest step of neuronal morphogenesis by polarizing axon/dendrite formation.  相似文献   

2.
Hyperglycemia (HG) reduces AMPK activation leading to impaired autophagy and matrix accumulation. Hydrogen sulfide (H2S) treatment improves HG-induced renovascular remodeling however, its mechanism remains unclear. Activation of LKB1 by the formation of heterotrimeric complex with STRAD and MO25 is known to activate AMPK. We hypothesized that in HG; H2S induces autophagy and modulates matrix synthesis through AMPK-dependent LKB1/STRAD/MO25 complex formation. To address this hypothesis, mouse glomerular endothelial cells were treated with normal and high glucose in the absence or presence of sodium hydrogen sulfide (NaHS), an H2S donor. HG decreased the expression of H2S regulating enzymes CBS and CSE, and autophagy markers Atg5, Atg7, Atg3 and LC3B/A ratio. HG increased galectin-3 and periostin, markers of matrix accumulation. Treatment with NaHS to HG cells increased LKB1/STRAD/MO25 formation and AMPK phosphorylation. Silencing the encoded genes confirmed complex formation under normoglycemia. H2S-mediated AMPK activation in HG was associated with upregulation of autophagy and diminished matrix accumulation. We conclude that H2S mitigates adverse remodeling in HG by induction of autophagy and regulation of matrix metabolism through LKB1/STRAD/MO25 dependent pathway.  相似文献   

3.
LKB1 is a Ser/Thr kinase, and its activity is regulated by the pseudokinase, STE20-related adaptor α (STRADα). The STRADα-LKB1 pathway plays critical roles in epithelial cell polarity, neuronal polarity, and cancer metastasis. Though much attention is given to the STRADα-LKB1 pathway, the function of STRADα itself, including a role outside of the LKB1 pathway, has not been well-studied. Data in Caenorhabditis elegans suggest that STRADα has an LKB1-independent role in regulating cell polarity, and therefore we tested the hypothesis that STRADα regulates cancer cell polarity and motility when wild-type LKB1 is absent. These results show that STRADα protein is reduced in LKB1-null cell lines (mutation or homozygous deletion) and this partial degradation occurs through the Hsp90-dependent proteasome pathway. The remaining STRADα participates in cell polarity and invasion, such that STRADα depletion results in misaligned lamellipodia, improper Golgi positioning, and reduced invasion. To probe the molecular basis of this defect, we show that STRADα associates in a complex with PAK1, and STRADα loss disrupts PAK1 activity via Thr(423) PAK1 phosphorylation. When STRADα is depleted, PAK1-induced invasion could not occur, suggesting that STRADα is necessary for PAK1 to drive motility. Furthermore, STRADα overexpression caused increased activity of the PAK1-activating protein, rac1, and a constitutively active rac1 mutant (Q61L) rescued pPAK(Thr423) and STRADα invasion defects. Taken together, these results show that a STRADα-rac1-PAK1 pathway regulates cell polarity and invasion in LKB1-null cells. It also suggests that while the function of LKB1 and STRADα undoubtedly overlap, they may also have mutually exclusive roles.  相似文献   

4.
LKB1 is an upstream activating kinase for the AMP-activated protein kinase (AMPK) and at least 12 other AMPK-related kinases. LKB1 therefore acts as a master kinase regulating the activity of a wide range of downstream kinases, which themselves have diverse physiological roles. Here we identify a second form of LKB1 generated by alternative splicing of the LKB1 gene. The two LKB1 proteins have different C-terminal sequences generating a 50-kDa form (termed LKB1L) and a 48-kDa form (LKB1S). LKB1L is widely expressed in mouse tissues, whereas LKB1S has a restricted tissue distribution with predominant expression in the testis. LKB1S, like LKB1L, forms a complex with MO25 and STRAD, and phosphorylates and activates AMPK both in vitro and in intact cells. A phosphorylation site (serine 431 in mouse) and a farnesylation site (cysteine 433 in mouse) within LKB1L are not conserved in LKB1S raising the possibility that these sites might be involved in differential regulation and/or localization of the two forms of LKB1. However, we show that phosphorylation of serine 431 has no effect on LKB1L activity and that both LKB1L and LKB1S have similar patterns of subcellular localization. These results indicate that the physiological significance of the different forms of LKB1 is not related directly to differences in the C-terminal sequences but may be due to their differential patterns of tissue distribution.  相似文献   

5.
The GTPase Rnd1 affects actin dynamics antagonistically to Rho and has been implicated in the regulation of neurite outgrowth, dendrite development, and axon guidance. Here we show that Rnd1 interacts with the microtubule regulator SCG10. This interaction requires a central domain of SCG10 comprising about 40 amino acids located within the N-terminal-half of a putative alpha-helical domain and is independent of phosphorylation at the four identified phosphorylation sites that regulate SCG10 activity. Rnd1 enhances the microtubule destabilizing activity of SCG10 and both proteins colocalize in neurons. Knockdown of Rnd1 or SCG10 by RNAi suppressed axon extension, indicating a critical role for both proteins during neuronal differentiation. Overexpression of Rnd1 in neurons induces the formation of multiple axons. The effect of Rnd1 on axon extension depends on SCG10. These results indicate that SCG10 acts as an effector downstream of Rnd1 to regulate axon extensions by modulating microtubule organization.  相似文献   

6.
The atypical protein kinase C (aPKC) in complex with PAR3 and PAR6 is required for axon-dendrite differentiation, but the upstream factors responsible for regulating its activity are largely unknown. Here, we report that in cultured hippocampal neurons aPKC is directly regulated by Dishevelled (Dvl), an immediate downstream effector of Wnt. We found that downregulation of Dvl abrogated axon differentiation, whereas Dvl overexpression resulted in multiple axon formation. Interestingly, Dvl was associated with aPKC and this interaction resulted in aPKC stabilization and activation. Furthermore, the multiple axon formation resulting from Dvl overexpression was attenuated by expressing a dominant-negative aPKC in these neurons and overexpression of aPKC prevented the loss of axon caused by Dvl downregulation. Finally, Wnt5a, a noncanonical Wnt, activated aPKC and promoted axon differentiation. The Wnt5a effect on axon differentiation was attenuated by downregulating Dvl or inhibiting aPKC. Thus, Dvl-aPKC interaction can promote axon differentiation mediated by the PAR3-PAR6-aPKC complex.  相似文献   

7.
The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. We show here that the serine/threonine kinase LKB1, previously implicated in the establishment of epithelial polarity and control of cell growth, is required for axon specification during neuronal polarization in the mammalian cerebral cortex. LKB1 polarizing activity requires its association with the pseudokinase Stradalpha and phosphorylation by kinases such as PKA and p90RSK, which transduce neurite outgrowth-promoting cues. Once activated, LKB1 phosphorylates and thereby activates SAD-A and SAD-B kinases, which are also required for neuronal polarization in the cerebral cortex. SAD kinases, in turn, phosphorylate effectors such as microtubule-associated proteins that implement polarization. Thus, we provide evidence in vivo and in vitro for a multikinase pathway that links extracellular signals to the intracellular machinery required for axon specification.  相似文献   

8.
The establishment of a polarized morphology is an essential event in the differentiation of neurons into a single axon and dendrites. We previously showed that glycogen synthase kinase-3beta (GSK-3beta) is critical for specifying axon/dendrite fate by the regulation of the phosphorylation of collapsin response mediator protein-2 (CRMP-2). Here, we found that the overexpression of the small GTPase Ras induced the formation of multiple axons in cultured hippocampal neurons, whereas the ectopic expression of the dominant negative form of Ras inhibited the formation of axons. Inhibition of phosphatidylinositol-3-kinase (PI3-kinase) or extracellular signal-related kinase (ERK) kinase (MEK) suppressed the Ras-induced formation of multiple axons. The expression of the constitutively active form of PI3-kinase or Akt (also called protein kinase B) induced the formation of multiple axons. The overexpression of Ras prevented the phosphorylation of CRMP-2 by GSK-3beta. Taken together, these results suggest that Ras plays critical roles in establishing neuronal polarity upstream of the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway and mitogen-activated protein kinase cascade.  相似文献   

9.
The ability of neurons in the adult mammalian central nervous system (CNS) to regenerate after injury is limited by inhibitors in CNS myelin. Nogo-66 is the most important myelin inhibitor but the mechanisms of Nogo-66 inhibition of neurite outgrowth remain poorly understood. Particularly, the relationship between Nogo-66 and microtubule-affinity regulating kinase 2 (MARK2) has not been examined. This study investigated the role of MARK2 in Nogo-66 inhibition and the function of MARK2 in neurite elongation in neurons in vitro. MARK2 and phosphorylated MARK2 at Ser212 (p-Ser212) alterations in Neuro 2a cells were assessed at different Nogo-66 exposure times; the relationships between MARK2 and microtubule-associated proteins (MAPs) were determined via the overexpression or interference of MARK2. Our study reports that Nogo-66 inhibited the expression of total MARK2 but also reduced Ser212 phosphorylation of MARK2, whereas levels of MAP1-b and tau varied depending on MARK2 overexpression or reduced expression. Furthermore, MARK2 increased the proportion of tyrosinated α-tubulin, thereby disrupting the stability of tubulin, most likely affecting axonal growth. In line with these results, overexpression of MARK2 promoted neurite elongation and therefore is able to rescue the inhibitory effect of Nogo-66 on neurite growth. In conclusion, the intracellular PKB/MARK2/MAPs/α-tubulin pathway appears to be essential for neurite elongation in neurons in vitro. These results suggest a critical role for MARK2 in overcoming Nogo-66-induced inhibition of axon outgrowth in neurons. Pharmacological activators of MARK2 may be applicable to promote successful axonal outgrowth following many types of CNS injuries.  相似文献   

10.
The LKB1 gene encodes a serine/threonine kinase mutated in Peutz-Jeghers cancer syndrome. Despite several proposed models for LKB1 function in development and in tumour suppression, the detailed molecular action of LKB1 remains undefined. Here, we report the identification and characterization of an LKB1-specific adaptor protein and substrate, STRAD (STe20 Related ADaptor). STRAD consists of a STE20- like kinase domain, but lacks several residues that are indispensable for intrinsic catalytic activity. Endogenous LKB1 and STRAD form a complex in which STRAD activates LKB1, resulting in phosphorylation of both partners. STRAD determines the subcellular localization of wild-type, but not mutant LKB1, translocating it from nucleus to cytoplasm. One LKB1 mutation previously identified in a Peutz-Jeghers family that does not compromise its kinase activity is shown here to interfere with LKB1 binding to STRAD, and hence with STRAD-dependent regulation. Removal of endogenous STRAD by siRNA abrogates the LKB1-induced G(1) arrest. Our results imply that STRAD plays a key role in regulating the tumour suppressor activities of LKB1.  相似文献   

11.
The formation of axon/dendrite polarity is critical for the neuron to perform its signaling function in the brain. Recent advance in our understanding of cellular and molecular mechanisms underlying the development and maintenance of neuronal polarity has been greatly facilitated by the use of the culture system of dissociated hippocampal neurons. Among many polarization-related proteins, we here focus on the mammalian LKB1, the counterpart of the C. elegans Par-4, which is an upstream regulator among six Par (partitioning-defective) genes that act as master regulators of cell polarity in different cell types across evolutionary distant species. Recent studies have identified LKB1 and its downstream targets SAD/MARK kinases (mammalian homologs of Par-1) as key regulators of neuronal polarization and axon development in cultured neurons and in developing cortical neurons in vivo. We will review the properties of and interactions among proteins in this LKB1-SAD/MARK pathway, drawing upon information obtained from both neuronal and non-neuronal systems. Due to central role of the protein kinase A-dependent phosphorylation of LKB1 in the activation of this pathway, we will review recent findings on how cAMP and cGMP signaling may serve as antagonistic second messengers for axon/dendrite development, and how these cyclic nucleotides may mediate the action of extracellular polarizing factors by modulating the activity of the LKB1-SAD/MARK pathway.  相似文献   

12.
SIRT1, a histone/protein deacetylase, and AMP-activated protein kinase (AMPK) are key enzymes responsible for longevity and energy homeostasis. We examined whether a mechanistic connection exists between these molecules that involves the major AMPK kinase LKB1. Initial studies demonstrated that LKB1 is acetylated in cultured (HEK293T) cells, mouse white adipose tissue, and rat liver. In the 293T cells, SIRT1 overexpression diminished lysine acetylation of LKB1 and concurrently increased its activity, cytoplasmic/nuclear ratio, and association with the LKB1 activator STRAD. In contrast, short hairpin RNA for SIRT1, where studied, had opposite effects on these parameters. Mass spectrometric analysis established that acetylation of LKB1 occurs on multiple, but specific, lysine residues; however, only mutation of lysine 48 to arginine, which mimics deacetylation, reproduced all of the effects of activated SIRT1. SIRT1 also affected downstream targets of LKB1. Thus its overexpression increased AMPK and acetyl-CoA carboxylase phosphorylation, and conversely, RNA interference-mediated SIRT1 knockdown reduced AMPK phosphorylation and that of another LKB1 target MARK1. Consistent with the results in cultured cells, total LKB1 lysine acetylation was decreased by 60% in the liver of 48-h starved rats compared with starved-refed rats, and this was associated with modest but significant increases in both LKB1 and AMPK activities. These results suggest that LKB1 deacetylation is regulated by SIRT1 and that this in turn influences its intracellular localization, association with STRAD, kinase activity, and ability to activate AMPK.  相似文献   

13.
The tumor suppressor protein kinase LKB1 exerts its effects by phosphorylating and activating AMP-activated protein kinase (AMPK) and members of the AMPK-related kinase family, such as the brain-specific kinases BRSK1/BRSK2 (SAD-B/SAD-A). LKB1 contains a conserved serine residue near the C terminus (Ser-431 in mouse LKB1) that is phosphorylated by cyclic AMP-dependent protein kinase and p90-RSK. Although some studies suggest that LKB1 is constitutively active and is not rate-limiting for activation of AMPK, others have suggested that phosphorylation of Ser-431 is necessary to allow LKB1 to phosphorylate and activate AMPK and other downstream kinases. Prompted by our discovery of an LKB1 splice variant (LKB1S) that lacks Ser-431, we have reinvestigated this question. In HeLa cells (which lack endogenous LKB1), co-expression with STRADalpha and MO25alpha of wild type LKB1, the S431A or S431E mutants of LKB1, or LKB1(S) gave equal levels of activation of endogenous AMPK. Similarly, recombinant STRADalpha.MO25alpha complexes containing these LKB1 variants were equally effective at phosphorylating and activating AMPK, BRSK1, and BRSK2 in cell-free assays. Finally, all four LKB1 variants and a truncated LKB1 lacking the C-terminal region altogether were equally effective at causing cell cycle arrest when co-expressed with STRADalpha and MO25alpha in the G361 melanoma cell line. Our results do not support the idea that phosphorylation of Ser-431 increases the ability of LKB1 to phosphorylate downstream targets.  相似文献   

14.
Mouse protein 25 alpha (MO25 alpha) is a 40-kDa protein that, together with the STE20-related adaptor-alpha (STRAD alpha) pseudo kinase, forms a regulatory complex capable of stimulating the activity of the LKB1 tumor suppressor protein kinase. The latter is mutated in the inherited Peutz-Jeghers cancer syndrome (PJS). MO25 alpha binds directly to a conserved Trp-Glu-Phe sequence at the STRAD alpha C terminus, markedly enhancing binding of STRAD alpha to LKB1 and increasing LKB1 catalytic activity. The MO25 alpha crystal structure reveals a helical repeat fold, distantly related to the Armadillo proteins. A complex with the STRAD alpha peptide reveals a hydrophobic pocket that is involved in a unique and specific interaction with the Trp-Glu-Phe motif, further supported by mutagenesis studies. The data represent a first step toward structural analysis of the LKB1-STRAD-MO25 complex, and suggests that MO25 alpha is a scaffold protein to which other regions of STRAD-LKB1, cellular LKB1 substrates or regulatory components could bind.  相似文献   

15.
LKB1, the tumour suppressor, is found mutated in Peutz-Jeghers syndrome (PJS). The LKB1 is a serine-threonine kinase protein that is allosterically activated by the binding of STRADα and MO25α without phosphorylating the Thr212 present at activation loop. The present study aims to highlight the structural dynamics and complexation mechanism during the allosteric activation of LKB1 by these co-activators using molecular dynamics simulations. The all atom simulations performed on the complexes of LKB1 with ATP, STRADα, and MO25α for a period of 30 ns reveal that binding of STRADα and MO25α significantly stabilizes the highly flexible regions of LKB1 such as ATP binding region (β1-β2 loop), catalytic & activation loop segments and αG helix. Also, binding of STRADα and MO25α to LKB1 promotes coordinated motion between N- and C-lobes along with the catalytic & activation loops by forming H-bonds between LKB1 and co-activators, which further facilitate to establish the conserved attributes of active LKB1 such as (i) formation of salt bridge between Lys78 and Glu98, (ii) formation of stable hydrophobic R- and C-spines, and (iii) interaction between both catalytic and activation loops. Especially, the residues of LKB1 interacting with STRADα (Arg74, Glu342) and MO25α (Glu165, Pro203 and Phe204) are observed to play a significant role in stabilizing the (LKB1-ATP)-(STRADα-ATP)-MO25α complex. Overall, the present work highlighting the structural dynamics of LKB1 by the binding of allosteric co-activators is expected to provide a basic understanding on drug design specific to PJS syndrome.  相似文献   

16.
Peutz-Jeghers syndrome is an inherited cancer syndrome that results in a greatly increased risk of developing tumors in those affected. The causative gene is a protein kinase termed LKB1, predicted to function as a tumor suppressor. The mechanism by which LKB1 is regulated in cells is not known. Here, we demonstrate that stimulation of Rat-2 or embryonic stem cells with activators of ERK1/2 or of cAMP-dependent protein kinase induced phosphorylation of endogenously expressed LKB1 at Ser(431). We present pharmacological and genetic evidence that p90(RSK) mediated this phosphorylation in response to agonists that activate ERK1/2 and that cAMP-dependent protein kinase mediated this phosphorylation in response to agonists that activate adenylate cyclase. Ser(431) of LKB1 lies adjacent to a putative prenylation motif, and we demonstrate that full-length LKB1 expressed in 293 cells was prenylated by addition of a farnesyl group to Cys(433). Our data suggest that phosphorylation of LKB1 at Ser(431) does not affect farnesylation and that farnesylation does not affect phosphorylation at Ser(431). Phosphorylation of LKB1 at Ser(431) did not alter the activity of LKB1 to phosphorylate itself or the tumor suppressor protein p53 or alter the amount of LKB1 associated with cell membranes. The reintroduction of wild-type LKB1 into a cancer cell line that lacks LKB1 suppressed growth, but mutants of LKB1 in which Ser(431) was mutated to Ala to prevent phosphorylation of LKB1 were ineffective in inhibiting growth. In contrast, a mutant of LKB1 that cannot be prenylated was still able to suppress the growth of cells.  相似文献   

17.
18.
Two splice variants of LKB1 exist: LKB1 long form (LKB1L) and LKB1 short form (LKB1S). In a previous study, we demonstrated that phosphorylation of Ser-428/431 (in LKB1L) by protein kinase Cζ (PKCζ) was essential for LKB1-mediated activation of AMP-activated protein kinase (AMPK) in response to oxidants or metformin. Paradoxically, LKB1S also activates AMPK although it lacks Ser-428/431. Thus, we hypothesized that LKB1S contained additional phosphorylation sites important in AMPK activation. Truncation analysis and site-directed mutagenesis were used to identify putative PKCζ phosphorylation sites in LKB1S. Substitution of Ser-399 to alanine did not alter the activity of LKB1S, but abolished peroxynitrite- and metformin-induced activation of AMPK. Furthermore, the phosphomimetic mutation (S399D) increased the phosphorylation of AMPK and its downstream target phospho-acetyl-coenzyme A carboxylase (ACC). PKCζ-dependent phosphorylation of Ser-399 triggered nucleocytoplasmic translocation of LKB1S in response to metformin or peroxynitrite treatment. This effect was ablated by pharmacological and genetic inhibition of PKCζ, by inhibition of CRM1 activity and by substituting Ser-399 with alanine (S399A). Overexpression of PKCζ up-regulated metformin-mediated phosphorylation of both AMPK (Thr-172) and ACC (Ser-79), but the effect was ablated in the S399A mutant. We conclude that, similar to Ser-428/431 (in LKB1L), Ser-399 (in LKB1S) is a PKCζ-dependent phosphorylation site essential for nucleocytoplasmic export of LKB1S and consequent AMPK activation.  相似文献   

19.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder, characterized by progressive microcephaly, growth retardation, immunodeficiency, and pre-disposition to tumor formation. To investigate the functions of the NBS gene product, NBS1, on neurons, PC12 cells overexpressing NBS1 and related mutants and primary cortical neuronal culture were used in the present study. Small interfering RNA (siRNA) was applied to repress the expression of endogenous Nbs1 in PC12 cells and primary cortical neurons. We demonstrated that overexpression of NBS1 increases cellular proliferation and decreases the apoptosis of PC12 cells in serum withdrawal and ionizing irradiation, through the activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Overexpression of NBS1 also decreases neurite elongation on PC12 cells under nerve growth factor stimulation. Transfection of NBS1-overexpressing PC12 cells with a dominant negative Akt mutant attenuates the neuroprotection and cellular proliferation effects of NBS1 while having no effect on neurite elongation. PC12 cells overexpressing NBS657del5 and NBS653 mutants, in which the major NBS1 protein in cells are truncated proteins, have decreased cellular proliferation, increased cell death, and decreased neurite elongation compared with those of control PC12 cells. Repression of Nbs1 by siRNA decreases the PI 3-kinase activity and Akt phosphorylation levels, and induces neurite elongation in PC12 cells even without nerve growth factor stimulation. Repression of Nbs1 by siRNA in primary cortical neurons also increased neurite elongation, but increased neuronal death. We conclude that NBS1 can regulate neuronal proliferation and neuroprotection via PI 3-kinase/Akt pathway while regulating neuronal differentiation in a different pathway. Excessive accumulation of truncated protein secondary to 657del5 mutation may be detrimental to neurons, leading to defective neuronal proliferation and differentiation.  相似文献   

20.
Neuroglobin, the third mammalian globin with a hexa-coordinated heme, exists predominantly in neurons of the brain. Neuroglobin plays an important role in neuronal death upon ischemia and oxidative stress. The physiological function of neuroglobin remains unclear. Here, we report a novel function of neuroglobin in neurite development. Knocking-down neuroglobin exhibited a prominent neurite-deficient phenotype in mouse neuroblastoma N2a cells. Silencing neuroglobin prevented neurite outgrowth, while ectopic expression of neuroglobin but not homologous cytoglobin promoted neurite outgrowth of N2a cells upon serum withdrawal. In primary cultured rat cerebral cortical neurons, neuroglobin was upregulated and preferentially distributed in neurites during neuronal development. Overexpression of neuroglobin but not cytoglobin in cultured cortical neurons promoted axonal outgrowth, while knocking-down of neuroglobin retarded axonal outgrowth. Neuroglobin overexpression suppressed phosphatase and tensin homolog (PTEN) but increased Akt phosphorylation during neurite induction. Bimolecular fluorescence complementation and glutathione S-transferase pull-down assays revealed that neuroglobin and various mutants (E53Q, E118Q, K119N, H64A, H64L, and Y44D) bound with Akt and PTEN differentially. Neuroglobin E53Q showed a prominent reduced PTEN binding but increased Akt binding, resulting in decreased p-PTEN, increased p-Akt, and increased neurite length. Taken together, we demonstrate a critical role of neuroglobin in neuritogenesis or development via interacting with PTEN and Akt differentially to activate phosphatidylinositol 3-kinase/Akt pathway, providing potential therapeutic applications of neuroglobin for axonopathy in neurological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号