首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oncogenic process often leads to a loss of normal telomere length control, usually as a result of activation of telomerase. Nevertheless, there are also telomerase-independent events that involve a Rad50-dependent recombination mechanism to maintain telomere length. Previous work has implicated the Rb family of proteins in the control of telomere length, and we now demonstrate that the p130 member of the Rb family is critical for telomere length control. p130 interacts specifically with the RINT-1 protein, previously identified as a Rad50-interacting protein. We further show that RINT-1 is essential for telomere length control. We propose that p130, forming a complex with Rad50 through RINT-1, blocks telomerase-independent telomere lengthening in normal cells. Given previous work implicating E2F in the control of telomerase gene expression, these results thus point to complementary roles for the Rb/E2F pathway in the control of telomere length.  相似文献   

3.
4.
  相似文献   

5.
6.
Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3' single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3' telomere DNA, can regulate both ALT and TRD.  相似文献   

7.
Alternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA. It involves a one-step fluorescent in situ hybridization approach followed by fluorescence microscopy imaging. Our method reliably identified ALT in cancer cell lines from different tumor entities and was validated in three established models of ALT induction and suppression. Furthermore, we successfully applied ALT-FISH to spatially resolve ALT activity in primary tissue sections from leiomyosarcoma and neuroblastoma tumors. Thus, our assay provides insights into the heterogeneity of ALT tumors and is suited for high-throughput applications, which will facilitate screening for ALT-specific drugs.  相似文献   

8.
Approximately 10% of cancers overall use alternative lengthening of telomeres (ALT) instead of telomerase to prevent telomere shortening, and ALT is especially common in astrocytomas and various types of sarcomas. The hallmarks of ALT in telomerase-negative cancer cells include a unique pattern of telomere length heterogeneity, rapid changes in individual telomere lengths, and the presence of ALT-associated promyelocytic leukemia bodies (APBs) containing telomeric DNA and proteins involved in telomere binding, DNA replication, and recombination. The ALT mechanism appears to involve recombination-mediated DNA replication, but the molecular details are largely unknown. In telomerase-null Saccharomyces cerevisiae, an analogous survivor mechanism is dependent on the RAD50 gene. We demonstrate here that overexpression of Sp100, a constituent of promyelocytic leukemia nuclear bodies, sequestered the MRE11, RAD50, and NBS1 recombination proteins away from APBs. This resulted in repression of the ALT mechanism, as evidenced by progressive telomere shortening at 121 bp per population doubling, a rate within the range found in telomerase-negative normal cells, suppression of rapid telomere length changes, and suppression of APB formation. Spontaneously generated C-terminally truncated Sp100 that did not sequester the MRE11, RAD50, and NBS1 proteins failed to inhibit ALT. These findings identify for the first time proteins that are required for the ALT mechanism.  相似文献   

9.
Transfer of yeast telomeres to linear plasmids by recombination   总被引:45,自引:0,他引:45  
B Dunn  P Szauter  M L Pardue  J W Szostak 《Cell》1984,39(1):191-201
Three distinct segments (the partition-related, or PR segments) within the 370 bp par region of pSC101 have been shown by deletion analysis to be involved in partitioning of the plasmid to daughter cells. The two lateral segments are direct repeats, each of which potentially can pair with an inverted repeat located between them to form a hairpin-loop structure. Deletion of either lateral segment, together with the middle segment, results in plasmid instability (the Par- phenotype). Deletion of one PR segment yields a stable plasmid that nevertheless shows reduced ability to compete with a coexisting wild-type derivative of the same replicon (the Cmp- phenotype). Deletion of all three segments results in a rate of plasmid loss far in excess of that predicted from the observed copy number of the plasmid. Analysis of the segregation properties of these mutants and of temperature-sensitive and high copy number derivatives of the pSC101 replicon suggests a model in which the par function allows the nonreplicating plasmids of the intracellular pool to be counted as individual molecules, and to be distributed evenly to daughter cells. In the absence of par, the multicopy pool of plasmids behaves as a single segregation unit.  相似文献   

10.
Y. Tsukamoto  J. I. Kato    H. Ikeda 《Genetics》1996,142(2):383-391
To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rad51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.  相似文献   

11.
We have previously shown that the RAD50, RAD52, MRE11, XRS2, and HDF1 genes of Saccharomyces cervisiae are involved in the formation of deletions by illegitimate recombination on a monocentric plasmid. In this study, we investigated the effects of mutations of these genes on formation of deletions of a dicentric plasmid, in which DNA double-strand breaks are expected to occur frequently because the two centromeres are pulled to opposite poles in mitosis. We transformed yeast cells with a dicentric plasmid, and after incubation for a few division cycles, cells carrying deleted plasmids were detected using negative selection markers. Deletions occurred at a higher frequency than on the monocentric plasmid and there were short regions of homology at the recombination junctions as observed on the monocentric plasmid. In rad50, mre11, xrs2, and hdf1 mutants, the frequency of occurrence of deletions was reduced by about 50-fold, while in the rad52 mutant, it was comparable to that in the wild-type strain. The end-joining functions of Rad50, Mre11, Xrs2, and Hdf1, suggest that these proteins play important roles in the joining of DNA ends produced on the dicentric plasmid during mitosis. Received: 30 October 1996 / Accepted: 28 February 1997  相似文献   

12.
BACKGROUND: The Saccharomyces Mre11p, Rad50p, and Xrs2p proteins form a complex, called the MRX complex, that is required to maintain telomere length. Cells lacking any one of the three MRX proteins and Mec1p, an ATM-like protein kinase, undergo telomere shortening and ultimately die, phenotypes characteristic of cells lacking telomerase. The other ATM-like yeast kinase, Tel1p, appears to act in the same pathway as MRX: mec1 tel1 cells have telomere phenotypes similar to those of telomerase-deficient cells, whereas the phenotypes of tel1 cells are not exacerbated by the loss of a MRX protein. RESULTS: The nuclease activity of Mre11p was found to be dispensable for the telomerase-promoting activity of the MRX complex. The association of the single-stranded TG1-3 DNA binding protein Cdc13p with yeast telomeres occurred efficiently in the absence of Tel1p, Mre11p, Rad50p, or Xrs2p. Targeting of catalytically active telomerase to the telomere suppressed the senescence phenotype of mec1 mrx or mec1 tel1 cells. Moreover, when telomerase was targeted to telomeres, telomere lengthening was robust in mec1 mrx and mec1 tel1 cells. CONCLUSIONS: These data rule out models in which the MRX complex is necessary for Cdc13p binding to telomeres or in which the MRX complex is necessary for the catalytic activity of telomerase. Rather, the data suggest that the MRX complex is involved in recruiting telomerase activity to yeast telomeres.  相似文献   

13.
Protection of telomeres by the Ku protein in fission yeast   总被引:14,自引:0,他引:14       下载免费PDF全文
Schizosaccharomyces pombe cells survive loss of telomeres by a unique pathway of chromosome circularization. Factors potentially involved in this survival mechanism include the heterodimeric Ku protein and ligase IV, both of which are involved in the repair of DNA double-strand breaks in mammalian cells. Furthermore, Ku plays a role in telomere maintenance as well as in DNA double-strand break repair in Saccharomyces cerevisiae. We have identified Ku and ligase IV homologues in S. pombe and analyzed their functions during normal growth and in cells undergoing senescence. In the absence of either a Ku subunit (pku70(+)) or ligase IV (lig4(+)), nonhomologous DNA end-joining was severely reduced. Lack of functional Ku led to shorter but stable telomeres and caused striking rearrangements of telomere-associated sequences, indicating a function for Ku in inhibiting recombinational activities near chromosome ends. In contrast to S. cerevisiae, concurrent deletion of pku70(+) and the gene for the catalytic subunit of telomerase (trt1(+)) was not lethal, allowing for the first time the dissection of the roles of Ku during senescence. Our results support a model in which Ku protects chromosome termini from nucleolytic and recombinational activities but is not involved in the formation of chromosome end fusions during senescence. The conclusion that nonhomologous end-joining is not required for chromosome circularization was further supported by analysis of survivors in strains lacking the genes for both trt1(+) and lig4(+).  相似文献   

14.
15.
A central function of telomeres is to prevent chromosome ends from being recognized as DNA double-strand breaks (DSBs). Several proteins involved in processing DSBs associate with telomeres, but the roles of these factors at telomeres are largely unknown. To investigate whether the Mre11/Rad50/Nbs1 (MRN) complex is involved in the generation of proper 3' G-overhangs at human telomere ends, we used RNA interference to decrease expression of MRN and analysed their effects. Reduction of MRN resulted in a transient shortening of G-overhang length in telomerase-positive cells. The terminal nucleotides of both C- and G-rich strands remain unaltered in Mre11-diminished cells, indicating that MRN is not responsible for specifying the final end-processing event. The reduction in overhang length was not seen in telomerase-negative cells, but was observed after the expression of exogenous telomerase, which suggested that the MRN complex might be involved in the recruitment or action of telomerase.  相似文献   

16.
The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.  相似文献   

17.
In this report, we describe the identification and molecular characterization of a human RAD50 homolog, hRAD50. hRAD50 was included in a collection of cDNAs which were isolated by a direct cDNA selection strategy focused on the chromosomal interval spanning 5q23 to 5q31. Alterations of the 5q23-q31 interval are frequently observed in myelodysplasia and myeloid leukemia. This strategy was thus undertaken to create a detailed genetic map of that region. Saccharomyces cerevisiae RAD50 (ScRAD50) is one of three yeast RAD52 epistasis group members (ScRAD50, ScMRE11, and ScXRS2) in which mutations eliminate meiotic recombination but confer a hyperrecombinational phenotype in mitotic cells. The yeast Rad50, Mre11, and Xrs2 proteins appear to act in a multiprotein complex, consistent with the observation that the corresponding mutants confer essentially identical phenotypes. In this report, we demonstrate that the human Rad50 and Mre11 proteins are stably associated in a protein complex which may include three other proteins. hRAD50 is expressed in all tissues examined, but mRNA levels are significantly higher in the testis. Other human RAD52 epistasis group homologs exhibit this expression pattern, suggesting the involvement of human RAD52 epistasis group proteins in meiotic recombination. Human RAD52 epistasis group proteins are highly conserved and act in protein complexes that are analogous to those of their yeast counterparts. These findings indicate that the function of the RAD52 epistasis group is conserved in human cells.  相似文献   

18.
19.
Immortalized human cells are able to maintain their telomeres by telomerase or by a recombination-mediated DNA replication mechanism known as alternative lengthening of telomeres (ALT). We showed previously that overexpression of Sp100 protein can suppress ALT and that this was associated with sequestration of the MRE11/RAD50/NBS1 (MRN) recombination protein complex by Sp100. In the present study, we determined whether MRN proteins are required for ALT activity. ALT cells were depleted of MRN proteins by small hairpin RNA-mediated knockdown, which was maintained for up to 100 population doublings. Knockdown of NBS1 had no effect on the level of RAD50 or MRE11, but knockdown of RAD50 also depleted cells of NBS1, and knockdown of MRE11 depleted cells of all three MRN proteins. Depletion of NBS1, with or without depletion of other members of the complex, resulted in inhibition of ALT-mediated telomere maintenance, as evidenced by decreased numbers of ALT-associated promyelocytic leukemia bodies and decreased telomere length. In some clones there was an initial period of rapid shortening followed by stabilization of telomere length, whereas in others there was continuous shortening at a rate within the reported range for normal human somatic cells lacking a telomere maintenance mechanism. In contrast, depletion of NBS1 in telomerase-positive cells did not result in telomere shortening. A recent study showed that NBS1 was required for the formation of extrachromosomal telomeric circles (Compton, S. A., Choi, J. H., Cesare, A. J., Ozgur, S., and Griffith, J. D. (2007) Cancer Res. 67, 1513-1519), also a marker for ALT. We conclude that the MRN complex, and especially NBS1, is required for the ALT mechanism.  相似文献   

20.
《Molecular cell》2022,82(21):3985-4000.e4
  1. Download : Download high-res image (97KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号