首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wada M  Furuya M 《Plant physiology》1972,49(2):110-113
When filamentous protonemata of Adiantum capillus-veneris L. precultured under continuous red light were transferred to the dark, the apical cell divided about 24 to 36 hours thereafter. The time of the cell division was delayed for several hours by a brief exposure to far red light given before the dark incubation. The effect of far red light was reversed by a small dose of red light given immediately after the preceding far red light. The effects of red and far red light were repeatedly reversible, indicating that the timing of cell division was regulated by a phytochrome system. When a brief irradiation with blue light was given before the dark incubation, the cell division occurred after 17 to 26 hours in darkness. A similar red far red reversible effect was also observed in the timing of the blue light-induced cell division. Thus, the timing of cell division appeared to be controlled by phytochrome and a blue light-absorbing pigment.  相似文献   

2.
Light-induced Adhesion of Spirogyra Cells to Glass   总被引:1,自引:0,他引:1       下载免费PDF全文
Nagata Y 《Plant physiology》1977,59(4):680-683
Adhesion of Spirogyra (tentatively, Spirogyra fluviatilis) cells to glass is described. The cells of an algal filament can adhere to a substrate only when they are located at the end of the filament. Rapid adhesion is induced by blue-violet light (blue adhesion) as well as by temperature shift (about 6 C → about 22 C) or shaking (dark adhesion). Adherent cells detach in 1 hour in the absence of one of these stimuli. Slow adhesion is induced by red light (red adhesion) 1 hour after irradiation, and may be controlled by phytochrome. A cell once caused to adhere by red light does not release from the glass.  相似文献   

3.
Short exposure of the spores of Cheilanthes farinosa to low intensity red light promotes their germination, which is not reversed by a subsequent exposure to far red light. Germination is, however, inhibited by blue light administered before or after red light. Inhibition of germination by blue light is annulled by exposure to a higher intensity of red light, and germination of the repromoted spores is inhibited by far red light. Mutual photoreversibility of germination is also observed in repromoted spores irradiated successively with far red and red light. Although germination appears to be basically under phytochrome control, it is postulated that the presence of a blue light-absorbing pigment interferes with phytochrome transformations in the spores.  相似文献   

4.
Several inhibitors were applied to filamentous gametophytes of the fern Onoclea sensibilis in the attempt to characterize how electrical phenomena might be involved in the tip-swelling response to blue light (BL). The membrane potential of the apical cell in the typical fern filament rests near-120 mV in darkness, but irradiation with blue light causes the membrane to hyperpolarize at a steady rate of 2.6 mV min-1 until it reaches a new stable value between-130 and-135 mV. In darkness, 10-4M salicylhydroxamic acid (SHAM), an inhibitor of BL-mediated absorbance changes in putative plasma-membrane fractions from maize coleoptiles, has no observable effects on the membrane potential or on filamentous growth. A SHAM pretreatment before BL irradiation causes approx. 70% inhibition of the membrane hyperpolarization as well as a comparable reduction in the growth response; however, SHAM has no effect in experiments where its application follows the onset of the electrical response. Exposing the filaments to 10-5M Na3VO4, an inhibitor of the plasma-membrane ATPase, depresses the membrane potential in darkness. Depending on the timing of application, Na3VO4 prevents the initiation of or blocks further increases in the BL-mediated hyperpolarization. Application of Na3VO4 causes an immediate cessation of growth in both darkness and BL. These findings implicate the involvement of a plasmalemma-bound flavin-cytochrome complex and ATP-driven proton pump in the initial events of this growth response to blue light.  相似文献   

5.
By use of surface electrodes electropotenlial measurements were carried out on hypocotyl hooks of Phaseolus vulgaris seedlings. The hooks were illuminated with a small spot of white, blue, red or far red light. The potential changes in bean hypocotyl hooks do not show the red-far red reversible characteristics of phytochrome-mediated processes. By experimenting with inhibitors of photosynthesis we could demonstrate that the light-triggered potential changes in green bean hooks are correlated to photosynthetic electron transport phenomena. The red-light-induced transient is a depolarization, whereas blue light induces a hyperpolarization. Etiolated beans exhibit no bioelectric potential changes when subjected to red or far red irradiations. Blue light and white light induce a strong hyperpolarization in etiolated hooks cells. This transient seems to be an action potential induced by light. The action potential is influenced by inhibitors of electron transport and oxidative phosphorylation. By comparing the action spectrum of the action potential induced by light with the absorption spectra of extracted carotenoids and xanthophylls from etiolated bean hypocotyl hooks, we observed similarities.  相似文献   

6.
The aim of the current study is to investigate the influence of light intensity, quality of light and alternative membrane sytems on the growth and headspace-GC/MS chemical analysis of Plectranthus amboinicus cultivated in vitro. Nodal segments were grown under light intensities (26, 51, 69, 94 and 130 µmol m?2 s?1) provided by cool-white fluorescent lamps. Apical segments were grown under light-emitting diodes blue; red; 1 blue/2.5 red; 2.5 blue/1 red; 1 blue/1 red and white fluorescent lamps. Apical and nodal segments were grown under alternative membrane and membrane-free systems. One, two or four PTFE membranes were used on the lid of the culture vessel. The membranes provided natural ventilation and worked as filters. The results have shown significant differences in the growth and carvacrol content, as well as in the content of carvacrol precursors (γ-terpinene and p-cymene) in different treatments. Among all tested light intensities, the significant increase in the dry weight and in the carvacrol content of plantlets derived from the nodal segments was recorded at 69 µmol m?2 s?1. The monochromatic red led to greater shoot length and higher dry weight in plantlets derived from the apical segments, as well as to carvacrol accumulation greater than that provided by the fluorescent lamps. The culture vessel enclosure by one and two membranes led to higher dry weight in plantlets derived from the apical and nodal segments, respectively. They also showed higher carvacrol content. Thus, it is possible optimizing the growth and carvacrol content in P. amboinicus cultivated in vitro by adjusting these environmental parameters.  相似文献   

7.
During early stages in the transition from 1- to 2-dimensional gametophyte development the change from filamentous to bulbous apical cell is not accompanied by major changes in the nature or number of cytoplasmic components of the cell. However, chloroplasts in apical cells of plants grown in red light are larger than those from cells of plants grown in blue light. In addition, the orientation of cytoplasmic microtubules is different in apical cells of plants from red and blue light. This change in orientation may be causally related to the change in apical cell form during 1- to 2-dimensional growth.  相似文献   

8.
The involvement of phytochrome in stomatal movement in Commelina communis L. is indicated by the following observations: 1) Short irradiation with red or blue light causes opening, of isolated stomata and swelling of guard cell protoplasts. This is reversed by subsequent far red irradiation. 2) In a similar way, stomatal response to prolonged irradiation with red or blue light is decreased by concomitant far red irradiation. 3) Pretreatment with filipin, which interferes with phytochrome binding to membranes, decreases stomatal opening in red and blue light. The stomatal responses to blue and red light are modified by DCMU, N2, CO2-enriched atmosphere, and CO2-free air, which are known to affect, among other processes, chlorophyll fluorescence. Increased chlorophyll fluorescence by DCMU, N2 and CO2-enriched atmosphere enhanced stomatal opening in blue light and inhibited it in red light. CO2-free air, which decreases chlorophyll fluorescence, had the opposite effect.  相似文献   

9.
Continuous recordings of the effect of light on oat (Avena sativa L. cv. Victory) coleoptile and pea (Pisum sativum L. cv. Alaska) epicotyl growth were made. Using a single excised coleoptile 10 minutes of red light was found to promote growth after a latent period of 46 minutes. The stimulation was transient and was not far red-reversible. Blue and far red light also promoted growth with similar kinetics. The action of continuous red or far red light was similar to that of 10-minute light. The growth of the intact pea third internode (as well as excised segments) was strongly inhibited by red light, with a latent period of 80 minutes. This effect was far red-reversible, and far red and blue light caused only a slight inhibition of growth.  相似文献   

10.
Vaucheria geminata shows typical tip-growth. Symmetrical irradiationof the cell apex with strong blue or red light caused expansionat the very apex. The apical expansion required not only a largedosage, but also a long duration (>5 min), of irradiation.The expansion took place ca. 6 min after the onset of lighttreatment. The action spectrum for the response revealed thatblue light was the most effective: red light was two ordersof magnitude less effective. DCMU completely cancelled the expansioneffect of red light, yet the drug totally failed to inhibitthe effect of blue light. The expansion is thus controlled byboth the blue light-absorbing pigment system and photosynthesis.The expansion is a three-dimensional growth promotion event,i.e., it is accompanied by simultaneous longitudinal growth.Blue light caused another longitudinal growth promotion, a positivelight-growth response. The light-growth response is the firstfound in such a tip-growing cell. (Received January 17, 1981; Accepted February 27, 1981)  相似文献   

11.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

12.
Kang BG  Burg SP 《Plant physiology》1974,53(3):445-448
In the subapical third internode of 7-day-old etiolated pea seedlings, the magnitude of phototropic curvature in response to continuous unilateral blue illumination is increased when seedlings are pre-exposed to brief red light. The effect of red light on blue light-induced phototropism becomes manifest maximally 4 or more hours after red illumination, and closely parallels the promotive action of red light on the elongation of the subapical cells. Ethylene inhibits phototropic curvature by an inhibitory action on cell elongation without affecting the lateral transport of auxin. Pretreatment of seedlings with gibberellic acid causes increased phototropic curvature, but experiments using 14C-gibberellic acid indicate that gibberellic acid itself is not laterally transported under phototropic stimuli. Neither red light nor gibberellic acid treatment has any promotive effect on blue light-induced lateral transport of 3H-indoleacetic acid. Under conditions where phototropic curvature is increased by red light treatment, low concentrations of indoleacetic acid applied in lanolin paste to the apical cut end of the seedling cause an increased elongation response in subapical tissue. This could explain increased phototropic curvature caused by red light treatment.  相似文献   

13.
Harada A  Okazaki Y  Takagi S 《Planta》2002,214(6):863-869
In mesophyll cells of the aquatic angiosperm Vallisneria gigantea Graebner, red, blue, or blue plus far-red light induced a typical membrane hyperpolarization, whereas far-red light alone had little effect. Both N,N'-dicyclohexylcarbodiimide, a potent inhibitor of H+-ATPase, and carbonylcyanide m-chlorophenylhydrazone, an uncoupler, produced a considerable membrane depolarization in the dark-adapted cells and a complete suppression of the light-induced hyperpolarization. Although 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport, did not affect the membrane potential in darkness, it completely inhibited the light-induced membrane hyperpolarization. In vivo illumination of the leaves with red light caused a substantial decrease in the Km for ATP, not only of the vanadate-sensitive ATP-hydrolyzing activity in leaf homogenate, but also of the ATP-dependent H+-transporting activity in plasma membrane (PM) vesicles isolated from the leaves by aqueous polymer two-phase partitioning methods. The effects of red light were negated by the presence of DCMU during illumination. In vivo illumination with far-red light had no effect on the Km for ATP of H+-transporting activity. These results strongly suggest that an electrogenic component in the membrane potential of the mesophyll cell is generated by the PM H+-ATPase, and that photosynthesis-dependent modulation of the enzymatic activity of the PM H+-ATPase is involved in the light-induced membrane hyperpolarization.  相似文献   

14.
Concentrations of soluble sugars in guard cells in detached, sonicated epidermis from Vicia faba leaves were analyzed quantitatively by high performance liquid chromatography to determine the extent to which sugars could contribute to changes in the osmotic potentials of guard cells during stomatal opening. Stomata were illuminated over a period of 4 hours with saturating levels of red or blue light, or a combination of red and blue light. When stomata were irradiated for 3 hours with red light (50 micromoles per square meter per second) in a solution of 5 millimolar KCl and 0.1 millimolar CaCl2, stomatal apertures increased a net maximum of 6.7 micrometers and the concentration of total soluble sugar was 289 femtomoles per guard cell (70% sucrose, 30% fructose). In an identical solution, 2.5 hours of irradiation with 25 micromoles per square meter per second of blue light caused a maximum net increase of 7.1 micrometers in stomatal aperture and the total soluble sugar concentration was 550 femtomoles per guard cell (91% sucrose, 9% fructose). Illumination with blue light at 25 micromoles per square meter per second in a solution lacking KCl caused a maximum net increase in stomatal aperture of 3.5 micrometers and the sugar concentration was 382 femtomoles per guard cell (82% sucrose, 18% fructose). In dual beam experiments, stomata irradiated with 50 micromoles per square meter per second of red light opened steadily with a concomitant increase in sugar production. Addition of 25 micromoles per square meter per second of blue light caused a further net gain of 3.7 micrometers in stomatal aperture and, after 2 hours, sugar concentrations had increased by an additional 138 femtomoles per guard cell. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) were performed with epidermis illuminated with 50 micromoles per square meter per second of red light or with 25 micromoles per square meter per second of blue light in solutions containing or lacking KCl. DCMU completely inhibited sugar production under red light, had no effect on guard cell sugar production under blue light when KCl was present, and inhibited sugar production by about 50% when guard cells were illuminated with blue light in solutions lacking KCl. We conclude that soluble sugars can contribute significantly to the osmoregulation of guard cells in detached leaf epidermis of V. faba. These results are consistent with the operation of two different sugar-producing pathways in guard cells: a photosynthetic carbon reduction pathway and a pathway of blue light-induced starch degradation.  相似文献   

15.
Photocontrol of Hook Opening in Cuscuta gronovii Willd   总被引:3,自引:2,他引:1       下载免费PDF全文
Hook opening in seedlings of Cuscuta gronovii Willd. occurred only after prolonged exposures to blue, red, or far red light. Prolonged far red exposure was less effective than prolonged exposure to red or blue light. Brief far red irradiation inhibited the inductive effect of red light. The far red inhibition was in turn reversed by brief red irradiation. These effects suggest the involvement of two photosystems in the control of hook opening in Cuscuta gronovii Willd.: a phytochrome-mediated system and a separate high energy requirement.  相似文献   

16.
Kim HY  Coté GG  Crain RC 《Plant physiology》1992,99(4):1532-1539
Rhythmic light-sensitive movements of the leaflets of Samanea saman depend upon ion fluxes across the plasma membrane of extensor and flexor cells in opposing regions of the leaf-movement organ (pulvinus). We have isolated protoplasts from the extensor and flexor regions of S. saman pulvini and have examined the effects of brief 30-second exposures to white, blue, or red light on the relative membrane potential using the fluorescent dye, 3,3′-dipropylthiadicarbocyanine iodide. White and blue light induced transient membrane hyperpolarization of both extensor and flexor protoplasts; red light had no effect. Following white or blue light-induced hyperpolarization, the addition of 200 millimolar K+ resulted in a rapid depolarization of extensor, but not of flexor protoplasts. In contrast, addition of K+ following red light or in darkness resulted in a rapid depolarization of flexor, but not of extensor protoplasts. In both flexor and extensor protoplasts, depolarization was completely inhibited by tetraethylammonium, implicating channel-mediated movement of K+ ions. These results suggest that K+ channels are closed in extensor plasma membranes and open in flexor plasma membranes in darkness and that white and blue light, but not red light, close the channels in flexor plasma membranes and open them in extensor plasma membranes. Vanadate treatment inhibited hyperpolarization in response to blue or white light, but did not affect K+ -induced depolarization. This suggests that white or blue light-induced hyperpolarization results from activation of the H+ -ATPase, but this hyperpolarization is not the sole factor controlling the opening of K+ channels.  相似文献   

17.
Under natural photoperiodic conditions protandry in hermaphrodite disc flowers of sunflower (Helianthus annuus L.) is determined by the different elongation rates of the style and filaments. The elongation of the filament and style starts simultaneously after the daily dark period, but the style growth rate is slower. When plants close to anthesis are exposed to continuous white light (WL) a loss of protandry occurs: the filaments do not grow far enough to extrude the anthers from the corolla. The histological analyses show that the number of filament epidermal cells remains unaltered after organ elongation and that cells respond to photoperiod only by cell expansion. Emasculation does not substantially inhibit filament cell expansion, whereas isolation of the filament or stamen from the corolla suggests that this organ could be the perception site of the filament growth stimulus. In vitro treatments with auxin (indole-3-acetic acid, IAA or alpha-naphthaleneacetic acid, NAA) reverses the inhibition of cell expansion caused by continuous WL, whereas gibberellic acid (GA(3)) at high concentrations reproduces the effect of continuous WL. Experiments carried out on various Helianthus spp. show that all these plants have evolved the same photo- and hormonal-control of the protandry. In experiments in which the light treatments were continued for 24 h, the auxins drastically reduced the inhibiting effect of red light (R) and dichromatic treatments FR (far red)+R, whereas GA(3) repressed filament extension regardless of light quality. As far as auxins are concerned, the response of sunflower filaments does not appear to be connected with the polar transport of the hormone. Moreover, the promoting effect of darkness is not mediated by an increase of endogenous free IAA in disc flowers. However, sunflower filaments manifested a similar temporal pattern of response to the light/dark cycle and to auxin.  相似文献   

18.
N. Duell-Pfaff  E. Wellmann 《Planta》1982,156(3):213-217
Flavonoid synthesis in cell suspension cultures of parsley (Petroselinum hortense Hoffm.) occurs only after irradiation with ultraviolet light (UV), mainly from the UV-B (280–320 nm) spectral range. However, it is also controlled by phytochrome. A Pfr/Ptot ratio of approximately 20% is sufficient for a maximum phytochrome response as induced by pulse irradiation. Continuous red and far red light, as well as blue light, given after UV, are more effective than pulse irradiations. The response to blue light is considerably greater than that to red and far red light. Continuous red and blue light treatments can be substituted for by multiple pulses and can thus probably be ascribed to a multible induction effect. Continuous irradiations with red, far red and blue light also increase the UV-induced flavonoid synthesis if given before UV. The data indicate that besides phytochrome a separate blue light photoreceptor is involved in the regulation of the UV-induced flavonoid synthesis. This blue light receptor seems to require the presence of Pfr in order to be fully effective.Abbreviations HIR high irradiance response - Pfr far red absorhing form of phytochrome - Ptet total phytochrome - UV ultraviolet light  相似文献   

19.
G. I. Jenkins  D. J. Cove 《Planta》1983,157(1):39-45
Protoplasts prepared by enzymic treatment of protonemata of the moss Physcomitrella patens regenerate rapidly in white light (15 W m?2). The great majority of protoplasts follow a simple regenerative sequence, namely: cell wall synthesis; formation of an asymmetric cell; division of the asymmetric cell, and further extension and division to produce a new chloronemal filament. Only cell wall formation occurs independently of light. The production of an asymmetric cell requires relatively high photon fluence rates of blue or red light and ceases upon transfer to darkness. The subsequent stages of regeneration require much lower photon fluence rates, and red light is considerably more effective than blue or far-red light in permitting cell division. This system is of interest in the study of the induction of cell polarity in plants.  相似文献   

20.
The tissue used in this study was the midgut of the tobacco hornworm larva, Manduca sexta. The midgut epithelium is a single layer of cells resting on a thin basal lamina and underlying discontinuous muscle layer. The epithelial cells are of two main types, goblet and columnar cells, joined together by the septate junctions characteristic of insect epithelia. From this tissue we were able to isolate four distinct plasma membrane fractions; the lateral membranes, the columnar cell apical membrane, the goblet cell apical membrane and a preparation of basal membranes from both cell types. The lateral membranes were isolated by density gradient centrifugation following gentle homogenization of the midgut hypotonic medium, which caused the cells to rupture at their apical and basal surfaces, releasing long segments of lateral membranes still joined by their septate junctions. For isolation of apical and basal membranes the tissue was disrupted by ultrasound, based on the light microscopic observation that carefully controlled ultrasound can be used to disrupt each cell in layers starting at the apical surface. The top layer contained the columnar cell apical membrane, which consists of microvilli forming a brush border covering the lumenal surface of the epithelium. The second layer contained the goblet cell apical membrane, which is invaginated to form a cavity occupying the apical half of the cell, and the third layer contained the basal membranes. As each layer was stripped off the epithelium it was collected and the plasma membrane purified by differential or density gradient centrifugation. For all four membrane fractions, the isolation procedure was designed to preserve the original structure of the membrane as far as possible. This allowed electron microscopy to be used to follow each step in the isolation procedure, and to identify the constituents of each subcellular preparation. Although developed specifically for M. sexta midgut, these techniques could readily be modified for use on other epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号