共查询到20条相似文献,搜索用时 8 毫秒
1.
We have investigated the role of small nuclear ribonucleoprotein particles (snRNPs) in the in vitro splicing of messenger RNA precursors by a variety of procedures. Removal of the U-type snRNPs from the nuclear extracts of HeLa cells with protein A-Sepharose-coupled human autoimmune antibodies leads to complete loss of splicing activity. The inhibition of splicing can be prevented by saturating the coupled antibodies with purified nucleoplasmic U snRNPs prior to incubation with nuclear extract. We further demonstrate that an intact 5' terminus of U1 snRNA is required for the functioning of U1 snRNP in the splicing reaction. Antibodies directed against the trimethylated cap structure of the U snRNAs inhibit splicing. Upon removal of the first eight nucleotides of the U1 snRNA in the particles by site-directed hydrolysis with ribonuclease H in the presence of a synthetic complementary oligodeoxynucleotide splicing is completely abolished. These results are in strong support of current models suggesting that a base-pairing interaction between the 5' terminus of the U1 snRNA and the 5' splice site of a mRNA precursor is a prerequisite for proper splicing. 相似文献
2.
3.
A specific autonomously replicating sequence (ars2) occurring near the ARG4 locus on chromosome VIII of yeast (Saccharomyces cerevisiae) has been localized on a 100 base-pair region of DNA. The nucleotide sequence of a 1517 bp2 fragment spanning the ars2 region has been determined. The 100 bp ars2 region contains an 18 bp A + T sequence of perfect double symmetry (alphabetic symmetry superimposed on dyad symmetry). A 0.3 kb repetitive sequence (solo delta sequence) and a tRNAGln gene are located within the 1517 bp fragment along with ars2. The 100 bp ars2 region may be located within a divergent delta sequence that is oriented in an inverted and nearly tandem position with respect to the solo delta sequence. 相似文献
4.
Background
ADAR proteins are among the most extensively studied RNA binding proteins. They bind to their target and deaminate specific adenosines to inosines. ADAR activity is essential, and the editing of a subset of their targets is critical for viability. Recently, a huge number of novel ADAR targets were detected by analyzing next generation sequencing data. Most of these novel editing sites are located in lineage-specific genomic repeats, probably a result of overactivity of editing enzymes, thus masking the functional sites. In this study we aim to identify the set of mammalian conserved ADAR targets.Results
We used RNA sequencing data from human, mouse, rat, cow, opossum, and platypus to define the conserved mammalian set of ADAR targets. We found that the conserved mammalian editing sites are surprisingly small in number and have unique characteristics that distinguish them from non-conserved ones. The sites that constitute the set have a distinct genomic distribution, tend to be located in genes encoding neurotransmitter receptors or other synapse related proteins, and have higher editing and expression levels. We also found a high consistency of editing levels of this set within mice strains and between human and mouse. Tight regulation of editing in these sites across strains and species implies their functional importance.Conclusions
Despite the discovery of numerous editing targets, only a small number of them are conserved within mammalian evolution. These sites are extremely highly conserved and exhibit unique features, such as tight regulation, and probably play a pivotal role in mammalian biology. 相似文献5.
Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene 总被引:143,自引:0,他引:143
The DNA sequence of a 1.45 kb EcoRI fragment from the yeast (Saccharomyces cerevisiae) TRP1 region has been determined. The fragment contains the TRP1 gene and a yeast chromosomal replicator. The TRP1 gene has been located on the fragment by analysis of potential initiation and termination codons in the DNA sequence. This location has been confirmed by subcloning portions of the fragment. Both the 5' and 3' noncoding regions of the TRP1 gene contain sequence homologies with analogous areas surrounding other yeast genes. The yeast replicator has been localized in a region near the 3' end of the TRP1 gene. The DNA sequence in this region contains several structural features which may be involved in the initiation of DNA replication. 相似文献
6.
Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity 总被引:2,自引:0,他引:2 下载免费PDF全文
Ghosh M Liu G Randall G Bevington J Leffak M 《Molecular and cellular biology》2004,24(23):10193-10207
7.
Sequence of a yeast DNA fragment containing a chromosomal replicator and a tRNA Glu 3 gene. 总被引:12,自引:6,他引:12 下载免费PDF全文
The sequence of a 1.9 kb Bam x Hind III fragment from yeast has been determined. This fragment is part of a yeast 6.7 kb Hind III segment cloned into pBR322 (pY20). The fragment carries a single gene for a glutamate tRNA which has no intron. According to genetic analyses [1] this fragment also contains a yeast chromosomal replicator. We have analyzed the sequence for potential open reading frames and for several structural features which are thought to be involved in the initiation of DNA replication. Hybridization studies have revealed that portions of this sequence are repeated within the yeast genome. 相似文献
8.
Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis
Irene C Maciariello C Cioci F Camilloni G Newlon CS Fabiani L 《Molecular microbiology》2004,51(5):1413-1423
The analysis of replication intermediates of a Kluyveromyces lactis chromosomal autonomous replicating sequence (ARS), KARS101, has shown that it is active as a chromosomal replicator. KARS101 contains a 50 bp sequence conserved in two other K. lactis ARS elements. The deletion of the conserved sequence in KARS101 completely abolished replicator activity, in both the plasmids and the chromosome. Gel shift assays indicated that this sequence binds proteins present in K. lactis nuclear extracts, and a 40 bp sequence, previously defined as the core essential for K. lactis ARS function, is required for efficient binding. Reminiscent of the origin replication complex (ORC), the binding appears to be ATP dependent. A similar pattern of protection of the core was seen with in vitro footprinting. KARS101 also functions as an ARS sequence in Saccharomyces cerevisiae. A comparative study using S. cerevisiae nuclear extracts revealed that the sequence required for binding is a dodecanucleotide related to the S. cerevisiae ARS consensus sequence and essential for S. cerevisiae ARS activity. 相似文献
9.
10.
Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds"). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (~25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ~100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed. 相似文献
11.
The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP, is composed of multiple functional elements 下载免费PDF全文
Replication of the Epstein-Barr virus genome initiates at one of several sites in latently infected, dividing cells. One of these replication origins is close to the viral DNA maintenance element, and, together, this replication origin and the maintenance element are referred to as oriP. The replicator of oriP contains four binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA-1), the sole viral protein required for the replication and maintenance of oriP plasmids. We showed previously that these EBNA-1 sites function in pairs and that mutational inactivation of one pair does not eliminate replicator function. In this study we characterized the contribution of each EBNA-1 site within the replicator and flanking sequences through the use of an internally controlled replication assay. We present evidence that shows that all four EBNA-1 sites are required for an oriP plasmid to be replicated in every cell cycle. Results from these experiments also show that the paired EBNA-1 binding sites are not functionally equivalent and that the low affinity of sites 2 and 3 compared to that of sites 1 and 4 is not essential for replicator function. Our results suggest that a host cell protein(s) binds sequences flanking the EBNA-1 sites and that interactions between EBNA-1 and this protein(s) are critical for replicator function. Finally, we present evidence that shows that the minimal replicator of oriP consists of EBNA-1 sites 3 and 4 and two copies of a 14-bp repeat that is present in inverse orientation flanking these EBNA-1 sites. EBNA-1 sites 1 and 2, together with an element(s) within nucleotides 9138 to 9516, are ancillary elements required for full replicator activity. 相似文献
12.
13.
14.
Diego P. Vázquez 《Biological invasions》2002,4(1-2):175-191
Introduced mammalian herbivores can significantly affect ecosystems. Here, I review evidence on effects of introduced mammalian herbivores in the temperate forest of the southern Andes. Available data suggest that introduced herbivores decrease the abundance of seedlings and saplings of dominant tree species in some forest types, which could impair forest regeneration. They also affect understory species composition. The mechanisms of the effects of introduced herbivores are complex, and include direct effects of browsing or trampling and more complex interactions such as indirect effects through other species. Some native mammalian and avian predators may benefit from increased food availability resulting from high densities of some introduced mammalian herbivores. In turn, enhanced populations of predators may have resulted in increased predation on native prey. Competition for resources and disease transmission have also been proposed as possible negative effects of introduced herbivores on native herbivores, but little evidence supports this claim. Little is known about effects on invertebrates. 相似文献
15.
A functional map of the replicator region of the octopine Ti plasmid 总被引:14,自引:0,他引:14
A hybrid plasmid of pUB 110 (Neor) and pAB 124 (Tcr) has been constructed and shown to have a NeosTcr phenotype in Bacillus subtilis. A derivative of this pUB 110:pAB 124 hybrid has been isolated, pAB 324, which has the expected NeorTcr phenotype. A restriction endonuclease cleavage map of pAB 324 was compared to that of the parent hybrid. This showed that pAB 324 contained a minimum of two deletions and one insertion. This insertion (approximately 1.0 Md) has been identified as originating from the Bacillus subtilis chromosome. 相似文献
16.
《Cell communication & adhesion》2013,20(4-6):425-430
Gap junctions are abundant in the mammalian retina and many neuronal types form neural networks. Several different neuronal connexins have now been identified in the mammalian retina. Cx36 supports coupling in the AII amacrine cell network and is essential for processing rod signals. Cx36 is probably also responsible for photoreceptor coupling. Horizontal cells appear to be extensively coupled by either Cx50 or Cx57. These results indicate that multiple neuronal connexins are expressed in the mammalian retina and that different cell types express different connexins. 相似文献
17.
Circadian rhythms are entrained to the natural day:night cycle. Melanopsin expressed in retinal ganglion cells partially accounts for circadian photoentrainment. Dkhissi-Benyahya et al. demonstrate that medium wavelength opsin (MW-opsin) also plays an important role in the process. Furthermore, they develop a model explaining wavelength-dependent photoentrainment by melanopsin and MW-opsin. 相似文献
18.
Three distinct regulatory elements comprise the upstream promoter region of the nopaline synthase gene 总被引:5,自引:0,他引:5
Summary Fine deletion mutants were generated in the upstream control region of the nopaline synthase (nos) promoter to define the position and role of upstream regulatory elements. The results indicated that the 8 bp sequence (CAGAAACC) at -106/-113 and its inverted repeat (GGTTTCTG) at -140/-147 are important for promoter function. The downstream element appears more important than the upstream element since deletion of the former reduced promoter activity more significantly than deletion of the latter. Deletion of the element alone, however, did not abolish promoter function, whereas, deletion of the 10 bp potential Z-DNA-forming (Z) element located between the repeat elements nullified promoter activity. Therefore, it appears that the Z element is an essential upstream regulator and the repeated elements are upstream modulators of the nos promoter. These elements are functionally distinct since alteration of stereospecificity or insertion of short oligonucleotides between the elements did not significantly influence promoter activity. These regulatory elements were unable to function from 200 bp upstream of the CCAAT-TATA box region. 相似文献
19.
Anna Tóth Katalin Fodor Tünde Praznovszky Vilmos Tubak Andor Udvardy Gyula Hadlaczky Robert L. Katona 《PloS one》2014,9(1)
Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe’s disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest. 相似文献
20.
Masayoshi Matsuoka Masaaki Matsubara Hiromi Daidoh Tadayuki Imanaka Kohji Uchida Shuichi Aiba 《Molecular & general genetics : MGG》1993,237(3):327-333
Summary Two DNA segments exhibiting ARS (autonomously replicating sequence) activity in the dimorphic yeast Yarrowia lipolytica were cloned from its chromosome on an integrative LEU2 plasmid. These ARS segments, designated YlARS1 and YlARS2, conferred on the hybrid plasmids high transformation efficiency and enabled extrachromosomal transmission of the plasmids in 1 or 2 copies per yeast cell under selective conditions. Deletion analysis showed that at least 728–1003 by for YlARS1 and 1377–1629 by for YlARS2 were required for full function. Both of these regions contained two 10/11 matches to an ARS core consensus in Saccharomyces cerevisiae, whereas neither was similar to the S. cerevisiae centromere sequence. Significantly, both YlARS elements contained at, or close to, their boundaries a 13 bp sequence, 5-TATATTCAAGCAA-3, which resembles the cleavage site for topoisomerase II in Drosophila. A central 524 by ClaI fragment of YlARS2 contained four stretches of a 17 bp direct repeat sequence, 5-GAAAAACAAAAACAGGC-3, and exhibited the electrophoretic behavior typical of bent DNA. 相似文献