首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is a frequently used inhibitor of glycosphingolipid biosynthesis. However, some interesting characteristics of D-PDMP cannot be explained by the inhibition of glycolipid synthesis alone. In the present study, we showed that d-PDMP inhibits the activation of lysosomal acid lipase by late endosome/lysosome specific lipid, bis(monoacylglycero)phosphate (also called as lysobisphosphatidic acid), through alteration of membrane structure of the lipid. When added to cultured fibroblasts, D-PDMP inhibits the degradation of low-density lipoprotein (LDL) and thus accumulates both cholesterol ester and free cholesterol in late endosomes/lysosomes. This accumulation results in the inhibition of LDL-derived cholesterol esterification and the decrease of cell surface cholesterol. We showed that D-PDMP alters cellular cholesterol homeostasis in a glycosphingolipid-independent manner using L-PDMP, a stereoisomer of D-PDMP, which does not inhibit glycosphingolipid synthesis, and mutant melanoma cell which is defective in glycolipid synthesis. Altering cholesterol homeostasis by D-PDMP explains the unique characteristics of sensitizing multidrug resistant cells by this drug.  相似文献   

2.
ABCA1, a member of the ATP-binding cassette family, mediates the efflux of cellular lipids to free apolipoproteins, mainly apoA-I. The role of the C-terminal domain of apoA-I in this process has been evaluated by measuring the efflux capacity of a truncated form (apoA-I-(1-192)) versus intact apoA-I in different cellular models. In stimulated J774 macrophages, cholesterol efflux to apoA-I-(1-192) was remarkably lower than that to the intact apoA-I. The truncated apoA-I, lacking an important lipid-binding domain, was also significantly less efficient in removing phospholipids from stimulated macrophages. No difference was detected with stimulated Tangier fibroblasts that do not express functional ABCA1. The C-terminal domain of apoA-I is clearly involved in ABCA1-driven lipid efflux. Independent of the interaction with the cell surface, it may be the decreased ability of the truncated apoA-I to recruit membrane phospholipids that impairs its capacity to promote cell cholesterol efflux.  相似文献   

3.
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.  相似文献   

4.
Yamane M  Miyazawa K  Moriya S  Abe A  Yamane S 《Biochimie》2011,93(9):1446-1459
In A549 cells, the addition of D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) led to marked autophagy with massive microtubule-associated protein 1 light chain 3B (LC3B)-II protein expression as an indication of autophagy and a steep decrease of p62 protein as a co-indication of autophagy. The addition of DL-PDMP caused massive autophagy with an increase of CAAT/enhancer binding protein homologous protein (CHOP) expression as the marker of endoplasmic reticulum (ER) stress, lactate dehydrogenase (LDH) release without caspase 3 activation and many autophagic vacuoles/devoid of a cell membrane on morphology. On the other hand, the addition of DL-PDMP caused an increase in cellular or subcellular ceramides (Cers), especially palmitoyl-Cer, based on de novo synthesis of Cer, and led to caspase-independent apoptosis. Marked increases of Cer levels in the nuclear envelope were observed 17 h after the addition. The elevations of Cer synthase activity and longevity-assurance homologue (LASS)5 protein expression were observed in subcellular fractions from 30 min until 2 h after the addition. However, the elevations of Cer synthase activity were independent of reactive oxygen species generation or cytochrome P450 4F2 activity. Since an increase in LASS5 protein expression in subcellular fraction occur in preference to the variation of LC3B-II protein expression via CHOP expression after the addition and Cer accumulation induced by the addition contributes to ER stress, it is thought that an elevation of Cer synthase activity via LASS5 protein expression associate to autophagy via CHOP expression (ER stress) with the addition.  相似文献   

5.
A unique property of the extracellular matrix of J774 and THP-1 cells has been identified, which contributes to the ability of these cells to promote cholesterol efflux. We demonstrate high level apolipoprotein (apo) A-I binding to macrophage cells (THP-1 and J774) and to their extracellular matrix (ECM). However, high level apoA-I binding is not observed on fibroblasts, HepG2 cells, or U937 cells (a macrophage cell line that does not efflux cholesterol to apoA-I or bind apoA-I on their respective ECM). Binding to the ECM of THP-1 or J774 macrophages depends on the presence of apoA-I C-terminal helices and is markedly reduced with a mutant lacking residues 187-243 (apoA-I Delta(187-243)), suggesting that the hydrophobic C terminus forms a hydrophobic interaction with the ECM. ApoA-I binding is lost upon trypsin treatment or with Triton X-100, a preparation method that de-lipidates the ECM. However, binding is recovered with re-lipidation, and is preserved with ECM prepared using cytochalasin B, which conserves the endogenous phospholipid levels of the ECM. We also demonstrate that specific cholesterol efflux to apoA-I is much reduced in cells released from their native ECM, but fully restored when ECM-depleted cells are added back to ECM in the presence of apoA-I. The apoA-I-mediated efflux is deficient in plated or suspension U937 macrophages, but is restored to high levels when the suspension U937 cells are reconstituted with the ECM of J774 cells. The ECM-dependent activity was much reduced in the presence of glyburide, indicating participation of ABCA1 (ATP-binding cassette transporter 1) in the efflux mechanism. These studies establish a novel binding site for apoA-I on the macrophage ECM that may function together with ABCA1 in promoting cholesterol efflux.  相似文献   

6.
The majority of metastatic melanomas are resistant to different chemotherapeutic agents, consequently, the search for novel anti-melanoma agents and adjuvant is urgent. Here, we found that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosphingolipid biosynthesis, enhanced curcumin-induced cell growth inhibition and apoptosis in two melanoma cell lines (WM-115 and B16). PDMP facilitated curcumin-induced ceramide accumulation; the latter contributed to melanoma cell apoptosis. PDMP also dramatically enhanced curcumin-induced c-Jun N-terminal kinase activation, which was important to melanoma cell apoptosis. Meanwhile, curcumin plus PDMP treatment largely inhibited the activation of pro-survival PI3K/AKT signal pathway. In conclusion, PDMP-sensitized curcumin-induced melanoma cell growth inhibition and apoptosis in vitro due to changes of multiple signal events. Combining PDMP with curcumin may represent a new therapeutic intervention against melanoma.  相似文献   

7.
D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is an effective inhibitor of the glucosyltransferase that makes glucosylceramide. Virtually all of the hundreds of naturally occurring glycolipids are formed from this primary glycolipid, so the inhibitor acts to lower their concentrations by the process of attrition (hydrolytic catabolism). Trials with mice carrying ascites carcinoma cells showed that PDMP could produce a permanent cure in some of the animals and marked prolongation of life in the others (Inokuchi, J., I. Mason, and N.S. Radin. 1987. Cancer Lett. 38: 23-30). In order to maximize the effect, we studied the metabolism of PDMP by labeling it with [3H] on carbon one, using a labeling method that discriminated against the unwanted erythro-isomer. The active enantiomer of the inhibitor (D-) was isolated by chromatography of the camphanate esters, followed by methanolytic cleavage. Examination of the fate of the labeled drug after a single injection showed that it was very rapidly converted to several polar products that were rapidly excreted. The drug penetrated all of the organs readily and a small portion was oxidized at the C-1 position to yield 3H2O. From these findings it appeared likely that the amine is attacked by a mixed function oxidase based on cytochrome P450. This conclusion was confirmed by showing that the tissue levels of PDMP could be greatly elevated, for a much longer time, when the mice were pretreated with piperonyl butoxide or cimetidine. The amount of conversion to polar metabolites was substantially reduced and tissue levels of PDMP were maintained much longer. Analysis of mice injected with one or both drugs showed that piperonyl butoxide augmented the effects of PDMP on ceramide, glucosylceramide, and dihexosylceramide levels, as well as on the activity of glucosylceramide synthase. It is suggested that piperonyl butoxide be used as an adjuvant for the many useful drugs that are inactivated by the P450 system.  相似文献   

8.
Tangier disease (TD) is a human genetic disorder associated with defective apolipoprotein-I-induced lipid efflux and increased atherosclerotic susceptibility. It has been linked to mutations in the ATP-binding cassette protein A1 (ABCA1). Here we describe the establishment of permanent Tangier cell lines using telomerase. Ectopic expression of the catalytic subunit of human telomerase extended the life span of control and TD skin fibroblasts, and (in contrast to immortalization procedures using viral oncogenes) did not impair apolipoprotein A-I-induced lipid efflux. The key characteristics of TD fibroblasts (reduced cholesterol and phospholipid efflux) were observed both in primary and telomerase-immortalized fibroblasts from two unrelated homozygous patients. Surprisingly, the apolipoprotein-inducible cholesterol efflux in TD cells was significantly improved after immortalization (up to 40% of normal values). In contrast to ABCA1-dependent cholesterol efflux, this efflux was not inhibited by brefeldin A, glybenclamide, or intracellular ATP depletion but was inhibited in the presence of cytochalasin D. Apolipoprotein A-I-dependent cholesterol efflux was inversely correlated with the population doubling number in cell culture and was inhibited up to 40% in near-senescent normal diploid fibroblasts. This inhibition was completely reversed by telomerase. Thus ectopic expression of telomerase is a way to circumvent the lack of critical experimental material and represents a major improvement for studying cholesterol efflux pathways in lipid disorders. Our findings indicate the existence of an ABCA1-independent but cytoskeleton-dependent cholesterol removal pathway that may help to prevent early atherosclerosis in Tangier disease but may also be sensitive to aging phenomena ex vivo and possibly in vivo.  相似文献   

9.
The ATP binding cassette transporter A-1 (ABCA1) is critical for apolipoprotein-mediated cholesterol efflux, an important mechanism employed by macrophages to avoid becoming lipid-laden foam cells, the hallmark of early atherosclerotic lesions. It has been proposed that lipid-free apolipoprotein A-I (apoA-I) enters the cell and is resecreted as a lipidated particle via a retroendocytosis pathway during ABCA1-mediated cholesterol efflux from macrophages. To determine the functional importance of such a pathway, confocal microscopy was used to characterize the internalization of a fully functional apoA-I cysteine mutant containing a thiol-reactive fluorescent probe in cultured macrophages. ApoA-I was also endogenously labeled with (35)S-methionine to quantify cellular uptake and to determine the metabolic fate of the internalized protein. It was found that apoA-I was specifically taken inside macrophages and that a small amount of intact apoA-I was resecreted from the cells. However, a majority of the label that reappeared in the media was degraded. We estimate that the mass of apoA-I retroendocytosed is not sufficient to account for the HDL produced by the cholesterol efflux reaction. Furthermore, we have demonstrated that lipid-free apoA-I-mediated cholesterol efflux from macrophages can be pharmacologically uncoupled from apoA-I internalization into cells. On the basis these findings, we present a model in which the ABCA1-mediated lipid transfer process occurs primarily at the membrane surface in macrophages, but still accounts for the observed specific internalization of apoA-I.  相似文献   

10.
A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (− 28% for 70 μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages.  相似文献   

11.
Lipoprotein(a) [Lp(a)] is a highly atherogenic lipoprotein, whose metabolism is poorly understood. Efficient and secure drugs that can lower elevated plasma Lp(a) concentrations are currently lacking. Fibroblast growth factor-21 (FGF-21), a member of the FGFS super family, regulates glucose and lipid metabolism in hepatocytes and adipocytes via FGFR-ERK1/2 signaling. In this study, we investigated the molecular mechanisms that influence apolipoprotein(a) [apo(a)] biosynthesis. We also determined the effects of FGF21 on HepG2 cell apo(a) expression and secretion, as well as the mechanism of FGF21 in these effects. Results showed that FGF21 inhibited apo(a) expression at both mRNA and protein levels in a dose- and time--dependent manner and then suppressed the secretion of apo(a). These effects were attenuated by PD98059 (ERK1/2 inhibitor) and Elk-1 siRNA. PD166866 (FGFR1 inhibitor) also attenuated the FGF21-mediated inhibition of apo(a) expression and inhibited ERK1/2 and Elk-1 activation. These results demonstrate that FGF21 suppresses apo(a) expression via the FGFR1-ERK1/2-Elk-1 pathway.  相似文献   

12.
This study was undertaken to identify the alpha-helical domains of human apoE that mediate cellular cholesterol efflux and HDL assembly via ATP-binding cassette transporter A1 (ABCA1). The C-terminal (CT) domain (residues 222-299) of apoE was found to stimulate ABCA1-dependent cholesterol efflux in a manner similar to that of intact apoE2, -E3, and -E4 in studies using J774 macrophages and HeLa cells. The N-terminal (NT) four-helix bundle domain (residues 1-191) was a relatively poor mediator of cholesterol efflux. On a per molecule basis, the CT domain stimulated cholesterol efflux with the same efficiency (Km approximately 0.2 microM) as intact apoA-I and apoE. Gel filtration chromatography of conditioned medium from ABCA1-expressing J774 cells revealed that, like the intact apoE isoforms, the CT domain promoted the assembly of HDL particles with diameters of 8 and 13 nm. Removal of the CT domain abolished the formation of HDL-sized particles, and only larger particles eluting in the void volume were formed. Studies with CT truncation mutants of apoE3 and peptides indicated that hydrophobic helical segments governed the efficiency of cellular cholesterol efflux and that conjoined class A and G amphipathic alpha-helices were required for optimal efflux activity. Collectively, the data suggest that the CT lipid-binding domain of apoE encompassing amino acids 222-299 is necessary and sufficient for mediating ABCA1 lipid efflux and HDL particle assembly.  相似文献   

13.
Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages.  相似文献   

14.
Accumulated evidence shows that G protein-coupled receptor 119 (GPR119) plays a key role in glucose and lipid metabolism. Here, we explored the effect of GPR119 on cholesterol metabolism and inflammation in THP-1 macrophages and atherosclerotic plaque progression in apoE−/− mice. We found that oxidized LDL (Ox-LDL) significantly induced long intervening noncoding RNA (lincRNA)-DYNLRB2-2 expression, resulting in the upregulation of GPR119 and ABCA1 expression through the glucagon-like peptide 1 receptor signaling pathway. GPR119 significantly decreased cellular cholesterol content and increased apoA-I-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. In vivo, apoE−/− mice were randomly divided into two groups and infected with lentivirus (LV)-Mock or LV-GPR119 for 8 weeks. GPR119-treated mice showed decreased liver lipid content and plasma TG, interleukin (IL)-1β, IL-6, and TNF-α levels, whereas plasma levels of apoA-I were significantly increased. Consistent with this, atherosclerotic lesion development was significantly inhibited by infection of apoE−/− mice with LV-GPR119. Our findings clearly indicate that, Ox-LDL significantly induced lincRNA-DYNLRB2-2 expression, which promoted ABCA1-mediated cholesterol efflux and inhibited inflammation through GPR119 in THP-1 macrophage-derived foam cells. Moreover, GPR119 decreased lipid and serum inflammatory cytokine levels, decreasing atherosclerosis in apoE−/− mice. These suggest that GPR119 may be a promising candidate as a therapeutic agent.  相似文献   

15.
High density lipoprotein (HDL) isolated from human atherosclerotic lesions and the blood of patients with established coronary artery disease contains elevated levels of 3-nitrotyrosine and 3-chlorotyrosine. Myeloperoxidase (MPO) is the only known source of 3-chlorotyrosine in humans, indicating that MPO oxidizes HDL in vivo. In the current studies, we used tandem mass spectrometry to identify the major sites of tyrosine oxidation when lipid-free apolipoprotein A-I (apoA-I), the major protein of HDL, was exposed to MPO or peroxynitrite (ONOO(-)). Tyrosine 192 was the predominant site of both nitration and chlorination by MPO and was also the major site of nitration by ONOO(-). Electron paramagnetic spin resonance studies of spin-labeled apoA-I revealed that residue 192 was located in an unusually hydrophilic environment. Moreover, the environment of residue 192 became much more hydrophobic when apoA-I was incorporated into discoidal HDL, and Tyr(192) of HDL-associated apoA-I was a poor substrate for nitration by both myeloperoxidase and ONOO(-), suggesting that solvent accessibility accounted in part for the reactivity of Tyr(192). The ability of lipid-free apoA-I to facilitate ATP-binding cassette transporter A1 cholesterol transport was greatly reduced after chlorination by MPO. Loss of activity occurred in concert with chlorination of Tyr(192). Both ONOO(-) and MPO nitrated Tyr(192) in high yield, but unlike chlorination, nitration minimally affected the ability of apoA-I to promote cholesterol efflux from cells. Our results indicate that Tyr(192) is the predominant site of nitration and chlorination when MPO or ONOO(-) oxidizes lipid-free apoA-I but that only chlorination markedly reduces the cholesterol efflux activity of apoA-I. This impaired biological activity of chlorinated apoA-I suggests that MPO-mediated oxidation of HDL might contribute to the link between inflammation and cardiovascular disease.  相似文献   

16.
17.
Y Okada  N S Radin  S Hakomori 《FEBS letters》1988,235(1-2):25-29
A culture of BALB/c 3T3 cells grown in the presence of 40 microM of the ceramide analog compound RV538 (2-decanolyamino-3-morpholino-1-phenylpropanol) for several passages caused a substantial decrease in the level of all glycosphingolipids and an accumulation of ceramide and sphingomyelin. Associated with these chemical changes of sphingolipid composition and metabolism, the following phenotypic changes were observed: (i) loss of the cobblestone appearance at cell density saturation and development of fibroblastic appearance with partial overlapping of cells; (ii) reduction of cell growth rate; (iii) enhanced production of lactic acid; (iv) enhanced rate of glucose transport; and (v) higher incidence of large colony formation with infiltrating appearance in soft agar. Cell morphology changes, lactate production, and enhanced sugar uptake were reversed by co-culturing cells with gangliosides, particularly trisialogangliosides. Thus, these phenotypic changes mimicking those of oncogenically transformed cells are closely related to the blocked synthesis of glycolipids in these cells, whereas other changes may be caused by an accumulation of ceramide and sphingomyelin.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号