首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intra-islet interactions influence beta-cell function, and disruption of islet architecture results in a reduction in glucose-induced insulin secretion, whereas re-aggregation improves secretory responsiveness. Our studies on MIN6 cells have shown that by configuring beta-cells as three-dimensional islet-like structures there is a marked improvement in glucose-induced insulin secretion compared to that of their monolayer equivalents. In the present study, we have used the mouse glucagon-secreting alphaTC1 cell line to see whether homotypic interactions are important in the regulation of glucagon secretion from alpha-cells. We found no significant difference in the secretory responses of alphaTC1 cells maintained as monolayers or as cell clusters. We also found that different cell adhesion molecules are involved in cell interactions between alpha- and beta-cells; MIN6 cells express ECAD, whereas alphaTC1 cells express NCAM. ECAD is necessary for cell cluster formation by MIN6 cells but not by alphaTC1 cells, whereas NCAM is not needed for the formation of cell clusters in either cell line.  相似文献   

2.
Cell-to-cell interactions play an important role in the development and maintenance of the beta-cell phenotype. Here, we have investigated whether E-cadherin plays a role in regulating the growth of insulin-secreting MIN6 cells configured as three-dimensional islet-like clusters (pseudoislets). Pseudoislets form by cell aggregation rather than by proliferation from individual cells and attain the size of primary mouse islets after approximately 7 days of maintenance in culture. E-cadherin is known to mediate homotypic cell adhesion between beta-cells and has also been implicated in a number of cellular processes, including proliferation, apoptosis, and differentiation. E-cadherin and its associated intracellular elements, alpha- and beta-catenin, were upregulated in MIN6 pseudoislets. Pseudoislet formation was associated with an increased expression of cyclin-dependent kinase inhibitors and a concomitant downregulation of Ki67, suggesting an overall reduction in cellular proliferation. However, measurements of 5-bromo-2'-deoxyuridine incorporation revealed that there were no differences in the rate of MIN6 cell proliferation whether they were configured as monolayers or as pseudoislets, which is likely to be a result of their being a transformed cell line. Cells within pseudoislets were not necrotic, but apoptosis appeared to be upregulated in the islet-like structures. However, no differential expression of Fas and FasL was detected in monolayers and pseudoislets. These results suggest that cell-to-cell interactions within islet-like structures may initiate antiproliferative and proapoptotic signals.  相似文献   

3.
The secretory response of the intact islet is greater than the response of individual beta-cells in isolation, and functional coupling between cells is critical in insulin release. The changes in intracellular Ca(2+)([Ca(2+)](i)) which initiate insulin secretory responses are synchronized between groups of cells within the islet, and gap-junctions are thought to play a central role in coordinating signalling events. We have used the MIN6 insulin-secreting cell line, to examine whether uncoupling gap-junctions alters the synchronicity of nutrient- and non-nutrient-evoked Ca(2+)oscillations, or affects insulin secretion. MIN6 cells express mRNA species that can be amplified using PCR primers for connexin 36. A commonly used gap-junctional inhibitor, heptanol, inhibited glucose- and tolbutamide-induced Ca(2+)-oscillations to basal levels in MIN6 cell clusters at concentrations of 0.5 mM and greater, and it had similar effects in pseudoislets when used at 2.5 mM. Lower heptanol concentrations altered the frequency of Ca(2+)transients without affecting their synchronicity, in both monolayers and pseudoislets. Heptanol also had effects on insulin secretion from MIN6 pseudoislets such that 1 mM enhanced secretion while 2.5 mM was inhibitory. These data suggest that heptanol has multiple effects in pancreatic beta-cells, none of which appears to be related to uncoupling of synchronicity of Ca(2+)signalling between cells. A second gap-junction uncoupler, 18 alpha-glycyrrhetinic acid, also failed to uncouple synchronized Ca(2+)-oscillations, and it had no effect on insulin secretion. These data provide evidence that Ca(2+)signalling events occur simultaneously across the bulk mass of the pseudoislet, and suggest that gap-junctions are not required to coordinate the synchronicity of these events, nor is communication via gap junctions essential for integrated insulin secretory responses.  相似文献   

4.
Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation.  相似文献   

5.
The extracellular calcium-sensing receptor (CaR) was first identified in tissues involved in systemic Ca2+ homeostasis, where it acts to sense changes in circulating Ca2+. It has since been reported that the CaR is expressed in many tissues that are not associated with Ca2+ homeostasis, including the endocrine cells in pancreatic islets of Langerhans. In the present study we have used an insulin-secreting pancreatic beta-cell line (MIN6) to investigate the expression and function of CaR, using the calcimimetic A568, a CaR agonist that activates the CaR at physiological concentrations of extracellular Ca2+ ([Ca2+]o). Immunocytochemistry, Western blotting and RT-PCR confirmed the expression of CaR in MIN6 cells. CaR activation was associated with rapid and transient increases in [Ca2+]o, which were accompanied by the initiation of a marked but transient insulin secretory response. Stimulation of beta-cell secretory activity had no detectable effect on CaR mRNA levels, but CaR mRNA was markedly reduced by configuring MIN6 cells into islet- like structures. Our data are consistent with an important function for the beta-cell CaR in cell - cell communication within islets to co-ordinate insulin secretory responses.  相似文献   

6.
Cells from primary islets and beta-cell lines form pseudoislets (PIs) in static cultures. Interestingly, MIN6 beta-cells with aberrant regulation of proliferation form PIs which cease to grow after a week in culture. This growth arrest is attributed to a pro-apoptotic and anti-proliferative PI environment. We hypothesized that cell necrosis due to poor nutrient transport in dishes rather than apoptosis effects the observed PI size restriction. Formation of beta-cell PIs was explored in stirred-suspension bioreactors with enhanced mass transfer. Cells in stirred-suspension proliferated continuously and the PI size increased for two weeks. Bioreactor PIs displayed regulated basal insulin secretion and enhanced responsivity to glucose and incretins. Compared to dishes, cell viability in the bioreactor was higher with lower released lactate dehydrogenase activity. Similar expression of p21 and p27 in monolayers and PIs did not suggest an anti-proliferative PI milieu. Caspase-2, -8 and -9 activities were comparable in dish and bioreactor PIs, and the latter continued to grow after one week of culture. Thus, apoptosis is not sufficient to explain the differences in PI size between dishes and bioreactor. Moreover, the bioreactor method described here may be used to generate PIs with increased cell viability and function for research and clinical applications.  相似文献   

7.
Iino S  Sudo T  Niwa T  Fukasawa T  Hidaka H  Niki I 《FEBS letters》2000,479(1-2):46-50
The aim of this study was to investigate possible involvement of annexin XI in the insulin secretory machinery. In fluorescence immunocytochemistry, annexin XI was found in the cytoplasm of pancreatic endocrine cells and a pancreatic beta-cell line, MIN6, in a granular pattern. MIN6 cells also possessed weak and diffused annexin XI immunoreactivity in the cytoplasm. Immunoelectron microscopy revealed annexin XI in the insulin granules. Insulin secretion from streptolysin-O-permeabilized MIN6 cells was inhibited by anti-annexin XI antibody, when the release was stimulated by either Ca2+ or GTP-gammaS, but not by a protein kinase C-activating phorbol ester. Inhibition of insulin release by anti-annexin XI antibody was reproduced in permeabilized rat islets. These findings suggest that annexin XI may be involved in the regulation of insulin secretion from the pancreatic beta-cells.  相似文献   

8.
Voltage-dependent (Kv) outward K(+) currents repolarize beta-cell action potentials during a glucose stimulus to limit Ca(2+) entry and insulin secretion. Dominant-negative "knockout" of Kv2 family channels enhances glucose-stimulated insulin secretion. Here we show that a putative Kv2.1 antagonist (C-1) stimulates insulin secretion from MIN6 insulinoma cells in a glucose- and dose-dependent manner while blocking voltage-dependent outward K(+) currents. C-1-blocked recombinant Kv2.1-mediated currents more specifically than currents mediated by Kv1, -3, and -4 family channels (Kv1.4, 3.1, 4.2). Additionally, C-1 had little effect on currents recorded from MIN6 cells expressing a dominant-negative Kv2.1 alpha-subunit. The insulinotropic effect of acute Kv2.1 inhibition resulted from enhanced membrane depolarization and augmented intracellular Ca(2+) responses to glucose. Immunohistochemical staining of mouse pancreas sections showed that expression of Kv2.1 correlated highly with insulin-containing beta-cells, consistent with the ability of C-1 to block voltage-dependent outward K(+) currents in isolated mouse beta-cells. Antagonism of Kv2.1 in an ex vivo perfused mouse pancreas model enhanced first- and second-phase insulin secretion, whereas glucagon secretion was unaffected. The present study demonstrates that Kv2.1 is an important component of beta-cell stimulus-secretion coupling, and a compound that enhances, but does not initiate, beta-cell electrical activity by acting on Kv2.1 would be a useful antidiabetic agent.  相似文献   

9.
10.
Zhao YF  Zhu YL  Chen C 《生理学报》2004,56(2):253-257
为明确脂肪细胞对胰岛素细胞中KATP通道表达的直接影响,MIN6胰岛素细胞被分为两组:一组为对照组,一组与分化的3T3-L1脂肪细胞共培养1周。运用半定量RT-PCR方法测定MIN6细胞中KATP通道蛋白Kir6.2的表达变化,Fura-2荧光方法测定MIN6细胞内钙浓度的变化,放射免疫测定方法明确MIN6细胞的胰岛素分泌功能。结果显示,与3T3-L1脂肪细胞共培养1周后,MIN6细胞中Kir6.2的表达明显减少,其表达水平降低为对照组的65.3%。对照组MIN6细胞在0.1mmoi/L甲苯磺丁脲(KATP通道关闭剂)的刺激下,表现为细胞内钙水平显著性升高和胰岛素分泌显著性增加,而共培养组MIN6细胞则失去了甲苯磺丁脲刺激所引起的细胞内钙升高及胰岛素分泌反应。以上实验结果表明,3T3-L1脂肪细胞可以通过分泌一些活性因子直接降低MIN6细胞中KATP通道蛋白的表达和合成,损害MIN6细胞的胰岛素分泌功能。实验结果提示脂肪细胞直接参与2型糖尿病中胰岛β细胞功能障碍的发生。  相似文献   

11.
The insulin receptor (IR) and its signaling appear to be essential for insulin secretion from pancreatic beta-cells. However, much less is known about the role of the IR in alpha-cells. To assess the role of the IR in glucagon and insulin secretion, we engineered adeno-viruses for high efficiency small interference RNA (siRNA)-IR expression in isolated mouse pancreatic islets and lentiviruses for siRNA-IR expression in pancreatic alpha- and beta-cell lines (alpha-TC6 and MIN6) with specific, long term stable IR knockdown. Western blot analysis showed that these strategies resulted in 60-80% reduction of IR protein in islets and alpha- and beta-cell lines. Cell growth was reduced by 35-50% in alpha-TC and MIN6 cells stably expressing siRNA-IR, respectively. Importantly, glucagon secretion, in response to glucose (25 to 2.8 mm), was completely abolished in islets expressing siRNA-IR, whereas secretion increased 1.7-fold in islets expressing control siRNA. In contrast, there was no difference in glucose-stimulated insulin secretion when comparing siRNA-IR and siRNA control, with both groups showing a 1.7-fold increase. Islet glucagon and insulin content were also unaffected by IR knockdown. To further explore the role of the IR, siRNA-IR was stably expressed in pancreatic cell lines, which dramatically suppressed glucose-regulated glucagon secretion in alpha-TC6 cells (3.4-fold) but did not affect GSIS in MIN6 cells. Defects in siRNA-IR-expressing alpha-cells were associated with an alteration in the activity of Akt and p70S6K where insulin-induced phosphorylation of protein kinase B/AKt was greatly reduced while p70S6K activation was enhanced, suggesting that the related pathways play important roles in alpha cell function. This study provides direct evidence that appropriate expression of the IR in alpha-cells is required for glucose-dependent glucagon secretion.  相似文献   

12.
Isolated beta-cells are heterogeneous in sensory, biosynthetic and secretory capabilities, however, to enable efficient and appropriate secretion, cellular activity within the intact islet is synchronised. Historically, the entrainment of activity to a common pattern has been attributed to gap-junction mediated cell-to-cell communication. Although clearly influential, the possibility remains for other local synchronising mechanisms. In this study, we have used small clusters of insulin-secreting MIN6 cells to assess how contact-dependent, homotypic interactions between cells influences nutrient- and non-nutrient- evoked Ca(2+)-handling and insulin secretion, and to determine whether a secreted product plays a role in the synchronisation of oscillatory activity. Tolbutamide evoked a concentration-dependent recruitment of active cells within cell clusters, both in terms of numbers of cells and amplitude of the evoked Ca(2+)-response. The change in [Ca(2+)](i) was characteristically oscillatory above a mean elevated plateau, and was in phase between member cells of an individual cluster. Even at maximal concentrations (100 microM) some cells within a cluster responded before their immediate neighbours. Subsequent oscillatory behaviour then became entrained between member cells within that cluster. Inhibiting exocytosis using the microtubule inhibitors vincristine and nocodazole, or the adrenergic agent noradrenaline, did not prevent tolbutamide-evoked oscillatory changes in [Ca(2+)](i) but did reduce the probability of obtaining synchronous activity within an individual cluster. Above a threshold glucose concentration, the number of cells secreting insulin increased, without a commensurate change in secretory efficiency. This recruitment of cells secreting insulin mirrored Ca(2+) data that showed a glucose-dependent increase in cell number, without a change in the mean basal-to-peak change in [Ca(2+)](i). Together these data suggest that synchronised behaviour in MIN6 cells is dependent, in part, on a secreted factor that acts in a local paracrine fashion to recruit heterogeneous individual cellular activity into an organised group response.  相似文献   

13.
Insulin secretion from perifused rat pancreatic pseudoislets   总被引:2,自引:0,他引:2  
Summary Isolated adult rat pancreatic islets were dispersed into single cells and cultured free-floating for 3 to 4 d, during which time islet cells reaggregated spontaneously into spherical clusters or pseudoislets. The gross morphology of these tissues resembled nondissociated islets. Electron microscopy revealed well-preserved cell ultrastructure and intercellular membrane connections. Immunofluorescent localization of islet cell types showed that A cells tended to be peripherally distributed around a B cell core, with D cells scattered throughtout the aggregate, mass. The dynamics of insulin release from pseudoislets were evaluated in vitro by perifusion techniques. Pseudoislets exhibited clear biphasic dose-dependent insulin responses to 30 min glucose stimulation over the range 5.5 to 30 mM. Repeated 2-min pulses with 22 mM glucose elicited brief monophasic spikes of insulin release of, consistent magnitude.l-Arginine (5 to 20 mM) evoked biphasic insulin release but these responses were not dose-dependent. These data indicate that islet cells reaggregate into structures with close morphologic similarities to intact islets, and that pseudoislet B cells continue to secrete insulin in response to nutrient secretagogues, comparable to that seen with islets in vitro and in situ. This work was supported by grants from the Medical Research Council of New Zealand. D. W. H. was the recipient of a Novo Diabetes Research Scholarship.  相似文献   

14.
The islet beta-cell   总被引:5,自引:0,他引:5  
  相似文献   

15.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

16.
The actin monomer sequestering agent latrunculin B depolymerized beta-cell cortical actin, which resulted in increased glucose-stimulated insulin secretion in both cultured MIN6 beta-cells and isolated rat islet cells. In perifused islets, latrunculin B treatment increased both first- and second-phase glucose-stimulated insulin secretion without any significant effect on total insulin content. This increase in secretion was independent of calcium regulation because latrunculin B also potentiated calcium-stimulated insulin secretion in permeabilized MIN6 cells. Confocal immunofluorescent microscopy revealed a redistribution of insulin granules to the cell periphery in response to glucose or latrunculin B, which correlated with a reduction in phalloidin staining of cortical actin. Moreover, the t-SNARE [target membrane soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] proteins Syntaxin 1 and SNAP-25 coimmunoprecipitated polymerized actin from unstimulated MIN6 cells. Glucose stimulation transiently decreased the amount of actin coimmunoprecipitated with Syntaxin 1 and SNAP-25, and latrunculin B treatment fully ablated the coimmunoprecipitation. In contrast, the actin stabilizing agent jasplakinolide increased the amount of actin coimmunoprecipitated with the t-SNARE complex and prevented its dissociation upon glucose stimulation. These data suggest a mechanism whereby glucose modulates beta-cell cortical actin organization and disrupts the interaction of polymerized actin with the plasma membrane t-SNARE complex at a distal regulatory step in the exocytosis of insulin granules.  相似文献   

17.
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.  相似文献   

18.
Low levels of intracellular antioxidant enzyme activities as well as glutathione (GSH) concentrations have been described in pancreatic beta cells. We examined the effects of intracellular GSH depletion on insulin secretion and the role of intracellular GSH in signal transduction in beta cell line, MIN6 cells. Anti-gamma-glutamylcysteine synthetase (gamma-GCS) heavy subunit ribozyme was stably transfected to MIN6 cells to reduce intracellular GSH concentration. In the presence of 10 mM glucose, ribozyme-transfected cells (RTC) increased insulin secretion from 0.58 microg/10(6) cells/h in control cells (CC) to 1.48 microg/10(6) cells/h. This was associated with increased intracellular Ca(2+) concentration in RTC, detected by fluo-3 staining. Our results demonstrated that intracellular GSH concentration might influence insulin secretion by MIN6 cells, and suggest that enhanced insulin secretion by beta cells conditioned by chronic depletion of GSH is mediated by increased intracellular Ca(2+) concentration.  相似文献   

19.
We have established two sublines derived from the insulin-secreting mouse pancreatic beta-cell line MIN6, designated m9 and m14. m9 Cells exhibit glucose-induced insulin secretion in a concentration-dependent manner, whereas m14 cells respond poorly to glucose. In m14 cells, glucose consumption and lactate production are enhanced, and ATP production is largely through nonoxidative pathways. Moreover, lactate dehydrogenase activity is increased, and hexokinase replaces glucokinase as a glucose-phosphorylating enzyme. The ATP-sensitive K(+) channel activity and voltage-dependent calcium channel activity in m14 cells are reduced, and the resting membrane potential is significantly higher than in m9 cells. Thus, in contrast to m9, a model for beta-cells with normal insulin response, m14 is a model for beta-cells with impaired glucose-induced insulin secretion. By mRNA differential display of these sublines, we found 10 genes to be expressed at markedly different levels. These newly established MIN6 cell sublines should be useful tools in the analysis of the genetic and molecular basis of impaired glucose-induced insulin secretion.  相似文献   

20.
Intracellular pH (pHi) was measured in the insulin-secreting HIT-T15 cell line using the pH-sensitive fluorescent dye, 2',7'-bis(carboxyethyl)-5'(6')-carboxyfluorescein (BCECF). It was observed that the addition of a weak acid (e.g., acetate or propionate) caused a rapid decrease in pHi, followed by a slower recovery to the resting pH value. Conversely the addition of N4Cl caused an increase in pHi followed by recovery. The addition of amiloride caused a fall in pHi; however, in this case no recovery to basal pH levels was observed. Subsequent addition of a weak acid caused a further fall in pHi with no recovery. The addition of glucose caused a transient acidification followed by alkalinization. When glucose was added to cells which had been pretreated with amiloride, the initial acidification was not followed by recovery or alkalinization. Addition of glyceraldehyde, alpha-ketoisocaproate, lactate or pyruvate to HIT cells also resulted in intracellular acidification followed by recovery. Similarly, depolarisation of HIT cells by treatment with high K+ or with Ba2+ was associated with a pronounced fall in pHi, followed by a gradual recovery. Insulin secretion from HIT cells was stimulated by glucose, glyceraldehyde, alpha-ketoisocaproate, lactate, pyruvate and KCl, whilst amiloride and weak acids exerted only modest effects in the absence of glucose, but amiloride in particular markedly potentiated glucose-induced insulin release. Thus, HIT cells appear to have an amiloride-sensitive mechanism for the extrusion of protons, probably Na+-H+ exchange. Whilst intracellular acidification appears to potentiate secretory responses to nutrient stimuli, it seems unlikely that the activation of HIT cells by these nutrients occurs as a result of intracellular acidification. The mechanisms by which various nutrient and non-nutrient stimuli might exert distinct effects on pHi are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号