首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A detailed proteolysis study of internalized diphtheria toxin (DT) within rat liver endosomes was undertaken to determine whether DT-resistant species exhibit defects in toxin endocytosis, toxin activation by cellular enzymes or toxin translocation to its cytosolic target. Following administration of a saturating dose of wild-type DT or nontoxic mutant DT (mDT) to rats, rapid endocytosis of the intact 62-kDa toxin was observed coincident with the endosomal association of DT-A (low association) and DT-B (high association) subunits. Assessment of the subsequent post-endosomal fate of internalized mDT revealed a sustained endo-lysosomal transfer of the mDT-B subunit accompanied by a net decrease in intact mDT and mDT-A subunit throughout the endo-lysosomal apparatus. In vitro proteolysis of DT, using an endosomal lysate, was observed at both neutral and acidic pH, with the subsequent generation of DT-A and DT-B subunits (pH 7) or DT fragments with low ADP-ribosyltransferase activity (pH 4). Biochemical characterization revealed that the neutral endosomal DT-degrading activity was due to a novel luminal 70-kDa furin enzyme, whereas the aspartic acid protease cathepsin D (EC 3.4.23.5) was identified as being responsible for toxin degradation at acidic pH. Moreover, an absence of in vivo association of the DT-A subunit with cytosolic fractions was identified, as well as an absence of in vitro translocation of the DT-A subunit from cell-free endosomes into the external milieu. Based on these findings, we propose that, in rat, resistance to DT may originate from two different mechanisms: the ability of free DT-A subunits to be rapidly proteolyzed by acidic cathepsin D within the endosomal lumen, and/or the absence of DT translocation across the endosomal membrane, which may arise from the absence of a functional cytosolic translocation factor previously reported to participate in the export of DT from human endosomes.  相似文献   

2.
Authier F  Kouach M  Briand G 《FEBS letters》2005,579(20):4309-4316
IGF-I is degraded within the endosomal apparatus as a consequence of receptor-mediated endocytosis. However, the nature of the responsible protease and the position of the cleavage sites in the IGF-I molecule remain undefined. In vitro proteolysis of IGF-I using an endosomal lysate required an acidic pH and was sensitive to CA074, an inhibitor of the cathepsin B enzyme. By nondenaturing immunoprecipitation, the acidic IGF-I-degrading activity was attributed to the luminal species of endosomal cathepsin B with apparent molecular masses of 32- and 28-kDa. The cathepsin B precursor, procathepsin B, was processed in vitro within isolated endosomes at pH 5 or at 7 in the presence of ATP, the substrate of the vacuolar H(+)-ATPase. The rate of IGF-I hydrolysis using an endosomal lysate or pure cathepsin B was found to be optimal at pH 5-6 and moderate at pH 4 and 7. Competition studies revealed that EGF and IGF-I share a common binding site on the cathepsin B enzyme, with native IGF-I displaying the lowest affinity for the protease (IC50 approximately 1.5 microM). Hydrolysates of IGF-I generated at low pH by endosomal IGF-I-degrading activity and analyzed by reverse-phase HPLC and mass spectrometry revealed cleavage sites at Lys68-Ser69, Ala67-Lys68, Pro66-Ala67 and Lys65-Pro66 within the C-terminal D-domain of IGF-I. Treatment of human HepG2 hepatoma cells with the cathepsin B proinhibitor CA074-Me reduced, in vivo, the intracellular degradation of internalized [125I]IGF-I and, in vitro, the degradation of exogenous [125I]IGF-I incubated with the cell-lysates at pH 5. Inhibitors of cathepsin B and pro-cathepsin B processing, which abolish endosomal proteolysis of IGF-I and alter tumor cell growth and IGF-I receptor signalling, merit investigation as antimetastatic drugs.  相似文献   

3.
Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic response to cholera toxin. Thus, in hepatic cells, a unique endocytic pathway was revealed following cholera toxin administration, with regulation specificity most probably occurring at the locus of the endosome and implicating endosomal proteases, such as cathepsin D, as well as organelle acidification.  相似文献   

4.
Induction of the wild type cholera toxin operon (ctxAB) from multicopy clones inEscherichia coliinhibited growth and resulted in low yields of cholera toxin (CT). We found that production of wild type CT or its B subunit (CT-B) as a periplasmic protein was toxic forE. coli,but by replacing the native signal sequences of both CT-A and CT-B with the signal sequence from the B subunit ofE. coliheat-labile enterotoxin LTIIb we succeeded for the first time in producing CT holotoxin in high yield inE. coli.Based on these findings, we designed and constructed versatile cloning vectors that use the LTIIb-B signal sequence to direct recombinant native proteins with high efficiency to the periplasm ofE. coli.We confirmed the usefulness of these vectors by producing two other secreted recombinant proteins. First, usingphoAfromE. coli,we demonstrated that alkaline phosphatase activity was 17-fold greater when the LTIIb-B signal sequence was used than when the native leader for alkaline phosphatase was used. Second, using thepspAgene that encodes pneumococcal surface protein A fromStreptococcus pneumoniae,we produced a 299-residue amino-terminal fragment of PspA inE. coliin large amounts as a soluble periplasmic protein and showed that it was immunoreactive in Western blots with antibodies against native PspA. The vectors described here will be useful for further studies on structure–function relationships and vaccine development with CT and PspA, and they should be valuable as general tools for delivery of other secretion-competent recombinant proteins to the periplasm inE. coli.  相似文献   

5.
Cholera toxin (CT) stimulated the release of arachidonic acid (AA) from Chinese hamster ovary cells with no apparent lag period. CT-induced release of [3H]AA or its metabolites was dose dependent during a 4-hr period of toxin exposure with a minimum effective dose of 0.1 ng/ml. CT-induced release of [3H]AA metabolites began within 15 min of toxin addition and became maximal after approximately 5 hr. Neither CT-A subunit nor CT-B subunit alone caused [3H]AA release. Furthermore, [3H]AA release was not caused by addition of dibutyryl cAMP to the culture medium, indicating that the observed effect of CT on arachidonate metabolism appeared to be independent of cAMP. The effect of CT on AA metabolism is proposed as a possible mechanism leading to the synthesis of prostaglandin E and fluid secretion during cholera.  相似文献   

6.
The endosomal compartment of hepatic parenchymal cells contains an acidic endopeptidase, endosomal acidic insulinase, which hydrolyzes internalized insulin and generates the major primary end product A(1--21)-B(1--24) insulin resulting from a major cleavage at residues Phe(B24)-Phe(B25). This study addresses the nature of the relevant endopeptidase activity in rat liver that is responsible for most receptor-mediated insulin degradation in vivo. The endosomal activity was shown to be aspartic acid protease cathepsin D (CD), based on biochemical similarities to purified CD in 1) the rate and site of substrate cleavage, 2) pH optimum, 3) sensitivity to pepstatin A, and 4) binding to pepstatin A-agarose. The identity of the protease was immunologically confirmed by removal of greater than 90% of the insulin-degrading activity associated with an endosomal lysate using polyclonal antibodies to CD. Moreover, the elution profile of the endosomal acidic insulinase activity on a gel-filtration TSK-GEL G3000 SW(XL) high performance liquid chromatography column corresponded exactly with the elution profile of the immunoreactive 45-kDa mature form of endosomal CD. Using nondenaturating immunoprecipitation and immunoblotting procedures, other endosomal aspartic acid proteases such as cathepsin E and beta-site amyloid precursor protein-cleaving enzyme (BACE) were ruled out as candidate enzymes for the endosomal degradation of internalized insulin. Immunofluorescence studies showed a largely vesicular staining pattern for internalized insulin in rat hepatocytes that colocalized partially with CD. In vivo pepstatin A treatment was without any observable effect on the insulin receptor content of endosomes but augmented the phosphotyrosine content of the endosomal insulin receptor after insulin injection. These results suggest that CD is the endosomal acidic insulinase activity which catalyzes the rate-limiting step of the in vivo cleavage at the Phe(B24)-Phe(B25) bond, generating the inactive A(1--21)-B(1--24) insulin intermediate.  相似文献   

7.
Involvement of acidic cell compartments in processing and action of cholera toxin (CT) in rat liver has been examined using subcellular fractionation. Liver cell fractions prepared various times after CT injection display, after a lag phase, a progressive increase in adenylate cyclase activity, detectable earlier in Golgi-endosomal fractions (20 min) than in plasma membrane fractions (30 min), with a maximum (3-fold basal activity) achieved by 60-90 min. Endosomes containing in vivo internalized CT display a time-dependent increase in their ability to bind anti-A-subunit antibodies and to stimulate exogenous adenylate cyclase, which kinetically parallels the generation of A1 peptide, suggesting a translocation of A-subunit (or A1 peptide) across the endosomal membrane. In vivo chloroquine treatment inhibits endocytosis of CT taken up into the liver, lengthens the lag phase for adenylate cyclase activation by CT, and reduces by 3- to 10-fold the apparent affinity of the toxin for the enzyme. Incubation of endosomes containing internalized toxin at 37 degrees C under isotonic conditions results in a pH-dependent increase in generation of A1 peptide, membrane translocation of A-subunit (or A1 peptide), and degradation of toxin, with a maximum at pH 5. Addition of ATP, by decreasing the internal endosomal pH, stimulates both generation of the A1 peptide and degradation of toxin at pH 6-8. It is concluded that activation of adenylate cyclase by CT in intact liver requires association and subsequent processing of toxin in an acidic cell compartment, presumably endosomal.  相似文献   

8.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

9.
The presence of acid proteases in the endosomal compartment of macrophages has been recently demonstrated (Diment, S., Leech, M. S., and Stahl, P. D. (1988) J. Biol. Chem. 263, 6901-6907). This proteolytic activity allows the early degradation of ligands internalized by receptor-mediated endocytosis. To study the early steps that initiate the proteolytic processing of ligands, immune complexes formed with anti-dinitrophenol monoclonal IgG and radiolabeled dinitrophenol-derivatized bovine serum albumin were bound at 4 degrees C to Fc receptors of J774 macrophages. Cells were allowed to internalize immune complexes bound to the plasma membrane for different periods of time at 37 degrees C. Vesicle preparations generated from these cells were incubated in vitro at acidic pH to allow the hydrolysis of ligands located in protease-positive compartments. Ligand hydrolysis was observed after about 5 min of internalization, suggesting that at earlier times immune complexes were located in protease-free vesicles. Upon incubation of cell lysates under conditions that support in vitro endosome-endosome fusion, early protease-free endosomes containing ligand acquire proteolytic activity. Reconstitution of fusion-dependent proteolysis required energy, ions, membrane-associated factors, and cytosol. Cytosol was inactivated by incubation with N-ethylmaleimide. The proteolytic compartment formed upon in vitro incubation colocalized with endosomes in the light region of a Percoll gradient. Reconstitution was also achieved using an endosomal preparation separated from lysosomes in a Percoll gradient. Our results indicate that a fusion step between newly formed endocytic vesicles and a light density, protease-positive compartment triggers the proteolytic processing of ligands internalized by receptor-mediated endocytosis.  相似文献   

10.
Cholera toxin is known to inhibit lymphocyte activation in vitro, an effect attributed to its ability to activate adenylate cyclase and increase intracellular cyclic adenosine monophosphate. In these studies the effects of both cholera toxin (CT) and its purified binding subunit (CT-B) on lymphocyte proliferation in vitro was examined, using a variety of cell activators. We found that both CT and CT-B inhibited mitogen- and antigen-induced T cell proliferation and anti-IgM-induced B cell proliferation in a dose-dependent manner. However, only CT-inhibited lipopolysaccharide-induced B cell proliferation. Neither CT nor CT-B inhibited antigen uptake and presentation by macrophages. The CT-B preparation used was shown not to activate lymphocyte adenylate cyclase, although CT itself was a strong activator of this enzyme. Both molecules had to bind to the lymphocyte surface in order to inhibit. The time course of inhibition of both CT and CT-B was similar in that either could be added up to 24 hr after culture initiation and still inhibit substantially. The addition of excess human recombinant interleukin 2 to the cultures did not affect the inhibition by CT, and had only a partial affect on inhibition by CT-B. Similarly, CT was able to substantially inhibit recombinant interleukin 2-dependent T lymphoblast proliferation, whereas CT-B had only a small inhibitory effect. Inhibition was not major histocompatibility complex-restricted. We conclude that the binding of CT or CT-B to the lymphocyte surface membrane interferes in some way with the activation mechanism leading to proliferation. The inhibition mediated by CT-B does not involve the stimulation of intracellular adenylate cyclase. CT appears to inhibit both by binding via its B subunit and by activation of adenylate cyclase via its A subunit.  相似文献   

11.
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN).  相似文献   

12.
Monoclonal antibodies against pertussis toxin subunits   总被引:2,自引:0,他引:2  
Abstract Twenty monoclonal antibodies (mAbs) reacting with cholera toxin (CT) of Vibrio cholerae strain 569B were characterized in cross-section and GM1 ganglioside inhibition assays. MAbs were characterized by reaction with CT and Escherichia coli heat-labile porcine strain (LTp) and human strain (LTh) enterotoxins, and by GM1 ganglioside inhibition of mAb binding. Eight of 10 CT-A specific and 3 of 10 CT-B-specific mAbs cross-reacted with LTh and LTp. GM1 ganglioside inhibited reactions of the CT-B cross-reacting antibodies. Results showed that these epitodes common to the B subunit of CT and LT are located in or near the GM1 ganglioside binding region, and that the GM1 ganglioside-binding region of LT differs from that of CT.  相似文献   

13.
Native cholera toxin (nCT) and the heat-labile toxin 1 (nLT) of enterotoxigenic Escherichia coli are AB5-type enterotoxins. Both nCT and nLT are effective adjuvants that promote mucosal and systemic immunity to protein Ags given by either oral or nasal routes. Previous studies have shown that nCT as mucosal adjuvant requires IL-4 and induces CD4-positive (CD4+) Th2-type responses, while nLT up-regulates Th1 cell production of IFN-gamma and IL-4-independent Th2-type responses. To address the relative importance of the A or B subunits in CD4+ Th cell subset responses, chimeras of CT-A/LT-B and LT-A/CT-B were constructed. Mice nasally immunized with CT-A/LT-B or LT-A/CT-B and the weak immunogen OVA developed OVA-specific, plasma IgG Abs titers similar to those induced by either nCT or nLT. Both CT-A/LT-B and LT-A/CT-B promoted secretory IgA anti-OVA Ab, which established their retention of mucosal adjuvant activity. The CT-A/LT-B chimera, like nLT, induced OVA-specific mucosal and peripheral CD4+ T cells secreting IFN-gamma and IL-4-independent Th2-type responses, with plasma IgG2a anti-OVA Abs. Further, LT-A/CT-B, like nCT, promoted plasma IgG1 more than IgG2a and IgE Abs with OVA-specific CD4+ Th2 cells secreting high levels of IL-4, but not IFN-gamma. The LT-A/CT-B chimera and nCT, but not the CT-A/LT-B chimera or nLT, suppressed IL-12R expression and IFN-gamma production by activated T cells. Our results show that the B subunits of enterotoxin adjuvants regulate IL-12R expression and subsequent Th cell subset responses.  相似文献   

14.
Lysosomes are acidic intracellular compartments and are regarded as degradative and the end point, of the endocytic pathway. Here we provide evidence for the generation of acid hydrolase poor and non-acidic post-lysosomal compartments in NRK cells that have accumulated non-digestible macromolecules, Texas red-dextran (TR-Dex), within lysosomes. When TR-Dex was fed to the cells for 6h, most of the internalized TR-Dex colocalized with a lysosomal enzyme, cathepsin D. With an increase in the chase period, however, the internalized TR-Dex gradually accumulated in cathepsin D-negative vesicles. These vesicles were positive for a lysosomal membrane protein, LGP85, and their formation was inhibited by treatment of the cells with U18666A, which impairs membrane transport out of late endosomal/lysosomal compartments, thereby suggesting that the vesicles are derived from lysosomes. Interestingly, these compartments are non-acidic as judged for the DAMP staining. The results, therefore, suggest that the excess accumulation of non-digestible macromolecules within lysosomes induces the formation of acid hydrolase poor and non-acidic post-lysosomal compartments. The fact that treatment of the cells with lysosomotropic amines or a microtubule-depolymerization agent resulted in extensive colocalization of TR-Dex with cathepsin D further indicates that the formation of the post-lysosomal compartments depends on the lysosomal acidification and microtubule organization. Furthermore, these results suggest bi-directional membrane transport between lysosomes and the post-lysosomal compartments, which implies that the latter are not resting compartments.  相似文献   

15.
Monoclonal antibodies reacting with the B subunit of Vibrio cholerae O1 strain 569B cholera toxin (CT-B) were used to identify unique and common epitopes of V. cholerae non-O1 and Vibrio mimicus CT-B. Vibrio cholerae non-O1 strains produced CT-B showing three monoclonal antibody reaction patterns (epitypes), which corresponded with epitypes described previously for V. cholerae O1 classical biotype CT-B (CT1), El Tor biotype CT-B (CT2), and a unique V. cholerae non-O1 CT-B (CT3), which lacked an epitope located in or near the GM1 ganglioside binding site of 569B CT-B. Vibrio mimicus CT-B was immunologically indistinguishable from 569B CT-B. These and previous results define six epitopes on 569B CT-B, and a fourth epitope in or near the GM1 ganglioside binding site.  相似文献   

16.
The success of Mycobacterium as a pathogen hinges on its ability to modulate its intracellular environment. Mycobacterium avium reside in vacuoles with limited proteolytic activity, maintain cathepsin D in an immature form and remain accessible to internalized transferrin. Artificial acidification of isolated phagosomes facilitated processing of cathepsin D, demonstrating that pH alone limits proteolysis in these vacuoles. Moreover, analysis of IgG-bead phagosomes at early time points during their formation indicates that these phagosomes also acquire LAMP 1 and cathepsin D prior to the accumulation of proton-ATPases, and are transiently accessible to sorting endosomes. This suggests that the anomolous distribution of endosomal proteins in M. avium-containing vacuoles results from their arrested differentiation in an early transitional stage through which all phagosomes pass.  相似文献   

17.
A number of studies have demonstrated that cholera toxin (CT) is found in detergent-insoluble, cholesterol-enriched domains (rafts) in various cells, including neurons. We now demonstrate that even though CT is associated with these domains at the cell surface of cultured hippocampal neurons, it is internalized via a raft-independent mechanism, at both early and late stages of neuronal development. CT transport to the Golgi apparatus, and its subsequent degradation, is inhibited by hypertonic medium (sucrose), and by chlorpromazine; the former blocks clathrin recruitment, and the latter causes aberrant endosomal accumulation of clathrin. Moreover, both internalization of the transferrin receptor (Tf-R), which occurs via a clathrin-dependent mechanism, and CT internalization, are inhibited to a similar extent by sucrose. In contrast, the cholesterol-binding agents filipin and methyl-beta-cyclodextrin have no effect on the rate of CT or Tf-R internalization. Finally, once internalized, CT becomes more detergent-soluble, and chlorpromazine treatment renders internalized CT completely detergent-soluble. We propose two models to explain how, despite being detergent-insoluble at the cell surface, CT is nevertheless internalized via a raft-independent mechanism in hippocampal neurons.  相似文献   

18.
Oligonucleotide-directed mutagenesis of ctxB was used to produce mutants of cholera toxin B subunit (CT-B) altered at residues Cys-9, Gly-33, Lys-34, Arg-35, Cys-86 and Trp-88. Mutants were identified phenotypically by radial passive immune haemolysis assays and genotypically by colony hybridization with specific oligonucleotide probes. Mutant CT-B polypeptides were characterized for immunoreactivity, binding to ganglioside GM1, ability to associate with the A subunit, ability to form holotoxin, and biological activity. Amino acid substitutions that caused decreased binding of mutant CT-B to ganglioside GM1 and abolished toxicity included negatively charged or large hydrophobic residues for Gly-33 and negatively or positively charged residues for Trp-88. Substitution of lysine or arginine for Gly-33 did not affect immunoreactivity or GM1-binding activity of CT-B but abolished or reduced toxicity of the mutant holotoxins, respectively. Substitutions of Glu or Asp for Arg-35 interfered with formation of holotoxin, but none of the observed substitutions for Lys-34 or Arg-35 affected binding of CT-B to GM1. The Cys-9, Cys-86 and Trp-88 residues were important for establishing or maintaining the native conformation of CT-B or protecting the CT-B polypeptide from rapid degradation in vivo.  相似文献   

19.
L K Opresko  R A Karpf 《Cell》1987,51(4):557-568
We examined the role of proteolytic ligand modification in endosomal targeting using vitellogenin (VTG) uptake by Xenopus oocytes as a model system. Non-cleavable VTG is internalized, but does not appear in yolk platelets. We identified two inhibitors of VTG processing into the yolk proteins: the ionophore monensin and pepstatin A, a specific inhibitor of cathepsin D. Pepstatin neither affected ligand binding and internalization, nor inhibited the degradation of nonspecifically incorporated proteins, whereas monensin inhibited all of these processes. Inhibiting VTG processing prevented its deposition into yolk platelets by strongly interfering with endosome-yolk platelet fusion. Monensin treatment resulted in morphologically abnormal endosomes, while pepstatin only inhibited VTG cleavage and the subsequent fusion of endosomes with yolk platelets. Since VTG cleavage is initiated prior to its deposition in platelets, we postulate that ligand proteolysis could be necessary for normal endosomal targeting.  相似文献   

20.
Cholera toxin (CT) and related AB(5) toxins bind to glycolipids at the plasma membrane and are then transported in a retrograde manner, first to the Golgi and then to the endoplasmic reticulum (ER). In the ER, the catalytic subunit of CT is translocated into the cytosol, resulting in toxicity. Using fluorescence microscopy, we found that CT is internalized by multiple endocytic pathways. Inhibition of the clathrin-, caveolin-, or Arf6-dependent pathways by overexpression of appropriate dominant mutants had no effect on retrograde traffic of CT to the Golgi and ER, and it did not affect CT toxicity. Unexpectedly, when we blocked all three endocytic pathways at once, although fluorescent CT in the Golgi and ER became undetectable, CT-induced toxicity was largely unaffected. These results are consistent with the existence of an additional retrograde pathway used by CT to reach the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号