首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Callus cultures derived from internodal segments of two cultivars of carnation susceptible to Fusarium oxysporum f.sp. dianthi were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant lines were selected by culturing calli on growth medium containing various concentrations of the culture filtrate of F. oxysporum f.sp. dianthi. Resistant calli obtained after two cycles (25 days/cycle) of selection were used for plant regeneration. About 32% of the plants regenerated from the resistant calli had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

3.
The fungitoxic flavonol triglycoside, kaempferide 3‐O‐[2Gβ‐d ‐glucopyranosyl]‐β‐rutinoside, is a constituent of the carnation cultivar ‘Novada’, known as one of the most resistant cultivar to Fusarium oxysporum f. sp. dianthi, causative agent of Fusarium wilt. Due to its constitutive presence within the carnation tissues, this antifungal flavonol should be considered as a phytoanticipin; its biosynthesis, however, is stimulated by the inoculation with F. oxysporum f. sp. dianthi, just as is the rule for a typical phytoalexin. The results seem to indicate that in carnation the concentration of some preformed antifungal flavonoids may be significantly increased by a fungal presence: owing to their fungitoxic properties, these molecules could cooperate, together with the unconstitutive and postinfectional anthranilic acid‐derivative phytoalexins, to the plant defensive response against Fusarium attacks.  相似文献   

4.
Summary Fusarium oxysporum f. sp.dianthi, pathogenic on carnation plants is very sensitive toBacillus subtilis M51 inhibition.Fusarium oxysporum disease (fusariosis) is prevented for a period of two months after treatment of plants withBacillus subtilis M51. The persistence ofB. subtilis M51, marked for selenomycin resistance (MZ51) and inoculated on the roots of carnation cuttings was studied. Soil used was two types: naturally infested withFusarium oxysporum and free from this pathogen. Bacterial cells presence on the roots was detected by direct plating and the presence of the pathogen in the roots was investigated by histological assays. Evidence gathered by these procedures suggest that plant protection is dependent on the physical presence ofB. subtilis M51 cells on the roots.  相似文献   

5.
Jojoba [Simmondsia chinensis (Link) Schneider] plantations in Israel originated from vegetative propagation, planted during 1991–92, have shown symptoms of wilting and subsequent death. Verticillium dahliae was only rarely isolated from these plants and artificial inoculation showed only mild disease symptoms. Fusarium oxysporum caused severe chlorosis, desiccation, defoliation and wilt in leaves of jojoba plants, resulting in plant death. Recovery of the fungus from artificially inoculated stem cuttings and seedlings showed for the first time that F. oxysporum was the primary pathogen. Inoculated cuttings exhibited wilt within 3 weeks, while in seedlings wilt occurred 10–24 weeks after inoculation. Seedlings and cuttings of jojoba which were inoculated with other Fusarium isolates originating from different crops (F. oxysporum f. sp. vasinfectum from cotton, F. oxysporum f. sp. dianthi from carnation, F. oxysporum f. sp. lycopersici from tomato and F. oxysporum f. sp. basilicum from basil) did not develop symptoms. Moreover, cotton, tomato, melon and cucumber seedlings inoculated with several virulent F. oxysporum isolates from jojoba did not show any symptoms of wilt or defoliation. These results indicate a high degree of specificity of the Fusarium isolates from jojoba; therefore, it is suggested that this isolate be defined as F. oxysporum f. sp. simmondsia.  相似文献   

6.
The roots of date palm contain four cell wall‐bound phenolic acids identified as p‐hydroxybenzoic, p‐coumaric, ferulic and sinapic acids. The ferulic acid represents the major phenolic compound since it constitutes 48.2–55.8% of cell wall‐bound phenolic acids. All these phenolic acids were present in the resistant cultivar (BSTN) and the susceptible cultivar (JHL). However, the pre‐infection contents of p‐coumaric, ferulic and sinapic acids were greater in the resistant cultivar than in the susceptible one. For the contents of p‐hydroxybenzoic acid, there was no significant difference between the resistant cultivar and the susceptible cultivar. Similarly, the pre‐infection contents of lignin were approximately equal for both cultivars. Inoculation of the date palm roots by Fusarium oxysporum f. sp. albedinis induced important modifications to the contents of the cell wall‐bound phenolic compounds and lignin, which made it possible to distinguish between resistant and susceptible cultivars. The post‐infection contents of cell wall‐bound phenolic compounds underwent a rapid and intense increase with a maximum accumulation on the tenth day for p‐hydroxybenzoic acid (1.54 μmol/g), p‐coumaric acid (2.77 μmol/g) and ferulic acid (2.64 μmol/g) and on the fifteenth day for sinapic acid (1.85 μmol/g). The maximum contents accumulated in the resistant cultivar were greater than those in the susceptible cultivar, namely, 11 times for p‐hydroxybenzoic acid, 2.6 times for p‐coumaric acid, 1.8 times for ferulic acid and 12.3 times for sinapic acid. In the susceptible cultivar, p‐coumaric acid and ferulic acid contents also increased after inoculation although they did not reach the pre‐infection contents of the resistant cultivar. The contents of p‐hydroxybenzoic acid in the susceptible cultivar roots did not present post‐infection modification and those of sinapic acid decreased instead. The lignin contents increased in both cultivars with a maximum accumulation on the fifteenth day. However, the maximum contents accumulated in the resistant cultivar roots were 1.5 times greater than those of the susceptible cultivar. These results showed clear differences between the resistant BSTN and the susceptible JHL cultivars. The implication of cell wall‐bound phenolic compounds and lignin in the resistance of date palm to F. oxysporum f. sp. albedinis appears to be dependent on the speed and intensity of their accumulation with greater contents in the first stage of infection.  相似文献   

7.
Six commercial carnation cultivars were inoculated with Fusarium oxysporum f. sp. dianthi race 2, and grown under three different temperature regimes. Colonization by the pathogen and development of wilt symptoms were assessed at intervals up to 40 days. No symptoms and very little colonization were seen in any of the cultivars at 14–15°C. At a temperature of 22°C, the cultivars were clearly differentiated into three groups: those with resistance, partial resistance or susceptibility to the pathogen depending on the severity of symptoms and the extent of fungal colonization. Symptom severity was associated with the extent of colonization. This differentiation was not seen at 26°C, when all cultivars except the most resistant, cv.‘Carrier 929′, rapidly became diseased and died by 23 days after inoculation. ‘Carrier 929’ also showed some wilt symptoms at this temperature and was colonized throughout the height of the stem after 40 days. The pathogen caused disease at 26°C by a combination of vascular wilting and stem base and root rotting. Fungal colonization was assayed at 22°C by the dilution plate/homogenization method and by estimation of fungal chitin in a highly resistant (‘Carrier 929′) and in a highly susceptible (‘Red Baron’) cultivar. Both methods of assay gave similar results. In ‘Red Baron’, colonization increased slowly up to 20 days after inoculation then progressed rapidly, closely following the development of severe wilt symptoms. In ‘Carrier 929’, colonization remained very low. The low level of fungal biomass in ‘Carrier 929’ compared with ‘Red Baron’ indicated that the former cultivar showed true resistance as opposed to tolerance to the disease.  相似文献   

8.
《Biological Wastes》1989,27(4):271-279
The role of microbial flora in the ability shown by poplar bark compost to combat the carnation phytopathogen Fusarium oxysporum f.sp. dianthi was investigated. Compost was divided into two parts, one sterilized and the other not, and was added to two different types of soil naturally infested with Fusarium oxysporum f. sp. dianthi. Experiments were carried out in greenhouse benches. At 15-day intervals the main microbial groups present in the soil were analysed and visual inspections were carried out to evaluate the mortality of the plants. Protection against Fusarium oxysporum f. sp. dianthi due to the compost added was found in both soil types, and the protection was more marked in the case of sterile compost. This difference in protection is due to a different growth rate of the soil zymogeneous fraction, a consequence of the different amounts of easily assimilable organic matter contained in the two types of compost.  相似文献   

9.
The influence of the nutrient solution pH on suppression of fusarium wilt by Pseudomonas flurescens WCS417r in carnation grown in rockwool was investigated. Experiments were conducted with carnation cultivars Lena and Pallas, susceptible and moderately resistant to fusarium wilt, respectively. WCS417r significantly reduced fusarium wilt in the susceptible cv. Lena, that was root-inoculated with Fusarium oxysporum f.sp. dianthi (Fod), at pH 7.5, but not at pH 6.5 and 5.5 This corresponded with a higher in vitro siderophore production and antagonism of Fod by WCS417r at pH 7.5 than at pH 6.5 and 5.5. Fusarium wilt in the moderately resistant cv. Pallas, however, was also significantly reduced by treatment with WCS417r at pH 5.5 This corresponded with the low influence of pH on induced resistance by WCS417r in plants of cv. Pallas that were stem-inoculated with Fod. The results indicate that the influence of pH on control of fusarium wilt of carnation by Pseudomonas fluorescens WCS417r differs between carnation cultivars that differ in their level of resistance against fusarium wilt. In susceptible cv. Lena, fusarium wilt is suppressed by antagonism by WCS417r, that is most effective at pH 7.5. In the moderately resistant cv. Pallas, fusarium wilt is suppressed by both antagonism and induced resistance by WCS417r. The latter is also effective at lower pH.  相似文献   

10.
The influence of culture filtrates of Fusarium oxysporum f.sp. dianthi which causes Fusarium wilt was investigated on growth and viability of carnation tissue cultures and leaf segments. Culture filtrates of avirulent race 1 of this fungus did not affect calli and leaf segments of cultivars both susceptible and resistant to Fusarium wilt. However, culture filtrates of virulent race 2 decreased viability and suppressed growth of callus of the susceptible cultivar. In contrast, callus of the resistant cultivar showed resistance to the culture filtrates. The results of these experiments may provide information on methods of selection of new wilt resistant carnation varieties.Abbreviations A270 absorbance at 270 nm - 2,4-d 2,4-dichlorophenoxyacetic acid - CF-MCD culture filtrate of 16064 grown in MCD medium - MCD medium modified Czapeck-Dox medium - MS medium basal medium of Murashige and Skoog - MW molecular weight - PD medium potato dextrose medium - TTC 2,3,5-triphenyl tetrazolium chloride  相似文献   

11.
D. Cafri    J. Katan    T. Katan 《Journal of Phytopathology》2005,153(10):615-622
The population structure of Fusarium oxysporum f. sp. cucumerinum was studied using the vegetative compatibility grouping (VCG) approach. All 37 of the examined isolates from Israel were assigned to VCG 0180, the major VCG found in North America and the Mediterranean region. Approximately two‐thirds of the tested isolates were pathogenic to both cucumber and melon, but cumulatively they were more aggressive on cucumber, their major host, than on melon. Disease symptoms on melon plants were less destructive and often expressed as growth retardation. Melon cultivars differing in Fom genes for resistance to F. oxysporum f. sp. melonis were inoculated with three isolates of F. oxysporum f. sp. cucumerinum. Results showed that Fom genes do not confer resistance to F. oxysporum f. sp. cucumerinum, although different horticultural types may respond differently to this pathogen. The reciprocal inoculation of F. oxysporum f. sp. melonis on cucumber, using four physiological races, did not result in disease symptoms or growth retardation. It is concluded that cucumerinum and melonis should remain two distinct formae speciales.  相似文献   

12.
Basal rot disease of onion is a major problem in different onion growing regions of Tamil Nadu, India. Fungal and bacterial cultures were isolated and tested their efficiency against Fusarium oxysporum f. sp. cepae under in vitro conditions. Effective bacterial and fungal antagonists were tested alone and in combinations for the control of F. oxysporum f. sp. cepae in glasshouse experiments. Defence-related enzymes such as peroxidase, polyphenol oxidase and phenylalanine ammonia-lyase were induced and accumulated in onion treated with fungal and bacterial antagonists. Defence-related enzymes were significantly higher in onion pretreated with consortial formulation of Pf12 + Pf27 + TH3 at 5 days after the challenge inoculation with F. oxysporum f. sp. cepae and gave resistance to onion against basal rot disease.  相似文献   

13.
Fusarium oxysporum f. sp. dianthi, f. sp. lycopersici, f. sp. cepae, f. sp. niveum and one unidentified F. oxysporum isolate proved to be active necrotrophic mycoparasites. In dual cultures hyphae of Trichoderma hamatum, T. longibrachiatum, T. pseudokoningii, T. harzianum, Botrytis cinerea and Rhizoctonia solani were parasitized and destroyed by F. oxysporum. One isolate of Phytophthora sp. was not affected. Mutual parasitism between F. oxysporum and T. pseudokoningii and T. longibrachiatum has been observed, too. Details of parasitic hyphal interactions: hyphal coiling, penetration sites, resistance sheat formation, hyphal invasion and internal growing are described. The mycoparasitic feature as well as antimicrobial metabolic production of F. oxysporum is probably a common phenomenon to ensure this important plant pathogenic species to compete successfully against other soil-borne fungal pathogens and saprophytes.  相似文献   

14.
A new chromene, cumanensic acid (1), together with eight known compounds have been isolated from the aerial part of Piper cf. cumanense Kunth (Piperaceae). Chromene structure was identified on the basis of spectroscopic analysis and comparison with literature data. The compound showed antifungal activity against Fusarium oxysporum f. sp. dianthi and Botrytis cinerea.  相似文献   

15.
The effect of root-knot nematode (Meloidogyne incognita) on external wilt symptoms and on the cotton plant's vascular response to stem-inoculation with Fusarium oxysporum f. sp. vasinfectum was investigated. Wilt symptoms were more severe in all plants inoculated with both organisms than with the fungus alone but relative wilt resistance of the cultivars was maintained. Greater symptom severity was associated with greater fungal proliferation in the stele and this was related to the ability of the nematode to reduce the efficiency of vascular occlusion. The nematode had no effect on the accumulation of infection-induced terpenoid aldehyde compounds.  相似文献   

16.
The effect of Pseudomonas fluorescens treatment and Fusarium oxysporum f. sp. cubense inoculation on induction of phenylalanine ammonia-lyase (PAL), peroxidase (POX), chitinase, -1,3-glucanase and accumulation of phenolics in banana (Musa sp.) was studied. When banana roots were treated with P. fluorescens strain Pf10, a two-fold increase in phenolic content in leaf tissues was recorded 3 – 6 d after treatment. Challenge inoculation with F. oxysporum, the wilt pathogen, steeply increased the phenolic content in P. fluorescens-treated banana plants. Significant increase in POX activity was detected 6 – 9 d after P. fluorescens treatment. PAL, chitinase and -1,3-glucanase activities increased significantly from 3 d after P. fluorescens treatment and reached the maximum 6 d after treatment. Challenge inoculation with F. oxysporum further increased the enzyme activities. These results suggest that the enhanced activities of defense enzymes and elevated content of phenolics may contribute to bioprotection of banana plants against F. oxysporum.  相似文献   

17.
Serratia liquefaciens provided better protection of carnations from infection by Fusarium oxysporum f. sp. dianthi, than did Hafnia alvei. The protection occurred when the bacterial isolates were applied to the cuttings before rooting, but not when applied to the root system of rooted cuttings. S. liquefaciens was recovered from carnation stem segments along the stem up to the top after 60 days but after 120 days they were recovered only up to 2.5cm. Zones of inhibition of Fusarium-conidia sprayed on agar plates previously incubated with stem segments appeared around the bacterial colonies of S. liquifaciens after additional incubation for 24—48h.  相似文献   

18.
Callus cultures derived from isogenic lines of the tomato cultivars Moneymaker and Craigella, resistant or susceptible to F. oxysporum f. sp. lycopersici, were inoculated with Fusarium oxysporum f. sp. lycopersici race 1. Fungal growth was restricted on callus derived from resistant plants, after inoculation with a conidial suspension, whereas callus derived from susceptible plants was totally overgrown by the fungus within 7 days. The concentration of the phytoalexin rishitin was significantly higher in the callus culture derived from a resistant tomato line compared with the callus culture from a susceptible line, 2 and 3 days after inoculation with mycelium. The results of the experiments were compared with experiments with whole plants. Rishitin production as well as growth of the fungus was comparable with responses in plant-fungus interaction. Therefore callus culture may be useful in studying the interaction between tomato plants and race 1 of F. oxysporum f. sp. lycopersici.  相似文献   

19.
Defence reactions occurring in resistant (cv. Gankezaomi) and susceptible (cv. Ganmibao) muskmelon leaves were investigated after inoculating with Colletotrichum lagenarium. Lesion restriction in resistant cultivars was associated with the accumulation of hydrogen peroxide (H2O2). The activity of antioxidants catalase (CAT) and peroxidase (POD) significantly increased in both cultivars after inoculation, while levels of both CAT and POD activity were significantly higher in the resistant cultivar. Ascorbate peroxidase (APX) increased in both cultivars after inoculation, and level of APX activity was significantly higher in the resistant cultivar. Glutathione reductase (GR) activity significantly increased in both cultivars following inoculation, but was higher in the resistant cultivar, resulting in higher levels of ascorbic acid (AsA) and reduced glutathione (GSH). Phenylalanine ammonia lyase (PAL) significantly increased in inoculated leaves of both cultivars, resulting in higher levels of total phenolic compounds and flavonoids. The pathogenesis‐related proteins chitinase (CHT) and β‐1, 3‐glucanase (GLU) significantly increased following inoculation with higher activity in the resistant cultivar. These findings show that resistance of muskmelon plants against C. lagenarium is associated with the rapid accumulation of H2O2, resulting in altered cellular redox status, accumulation of pathogenesis‐related proteins, activation of phenylpropanoid pathway to accumulation of phenolic compounds and flavonoids.  相似文献   

20.
The bayoud disease, vascular fusariosis of date palm tree (Phoenix dactylifera L.), is caused by the pathogenic fungus Fusarium oxysporum f. sp. albedinis. The characteristic symptoms of the bayoud disease were elicited on detached leaves of F. oxysporum f. sp. albedinis‐susceptible cultivars of date palm trees, which were treated either with the FII (F. oxysporum f. sp. albedinis) fraction purified from the organic extracts of a F. oxysporum f. sp. albedinis liquid culture, or with a solution of fusaric acid. Enniatins, which are secreted by several Fusarium species, were tested at different concentrations and were not capable of inducing symptoms on such detached leaves. The FII (F. oxysporum f. sp. albedinis) fraction was unable to induce necrosis of potato slices, which indicates that it does not contain significant amounts of enniatins. The high‐performance liquid chromatography (HPLC) profiles of the FII (F. oxysporum f. sp. albedinis) fraction showed toxic peaks different from fusaric acid. A fraction, named FII (AZ4), was obtained from culture filtrates of a saprophytic Fusarium strain maintained in the same cultural conditions as for the F. oxysporum f. sp. albedinis. The HPLC profile of the FII (AZ4) fraction did not show the characteristic phytotoxic peaks present in the FII (F. oxysporum f. sp. albedinis) fraction. This finding well agrees with the fact that the FII (AZ4) fraction is not toxic to detached date palm leaves. Moreover, the HPLC profiles of FII fractions obtained from other special forms of F. oxysporum are different the FII (F. oxysporum f. sp. albedinis) profile. The phytotoxic compounds purified from the FII (F. oxysporum f. sp. albedinis) fraction are probably new molecules that may help in understanding the pathogenesis of bayoud disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号