首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abscission: potentiating action of auxin transport inhibitors   总被引:14,自引:11,他引:3       下载免费PDF全文
Reduction in petiolar auxin transport has been proposed as one of the functional actions of endogenous or exogenous ethylene as it regulates intact leaf abscission. If this hypothesis is correct, auxin-transport inhibitors should hasten the rate or amount of abscission achieved with a given level of ethylene. Evidence presented here indicates that the hypothesis is correct. Three auxin transport inhibitors promoted ethylene-induced intact leaf abscission when applied to specific petioles or the entire cotton plant (Gossypium hirsutum L., cv. Stoneville 213). In addition, the transport inhibitors caused rapid abscission of leaves which usually do not abscise under the conditions employed. No stimulation of abscission occurred during the initial 3 to 5 days after plants were treated with transport inhibitors unless such treatments were coupled with exogenous ethylene or that derived from 2-chloroethylphosphonic acid. However, vegetative cotton plants did abscise some of their youngest true leaves during the 2nd and 3rd weeks of exposure to transport inhibitor alone. Taken as a whole, the results indicate that reducing the auxin supply to the abscission zone materially increases sensitivity to ethylene, a condition which favors a role of endogenous ethylene in abscission regulation. Such a role of ethylene indicates the importance of auxin-ethylene interactions in the over-all hormone balance of plants and specific tissues.  相似文献   

2.
Aharoni N 《Plant physiology》1978,61(4):658-662
The pattern of changes in the internal concentration of ethylene in response to water stress was investigated in species with leaves that do abscise and leaves that do not abscise. When leaves which abscise were detached and exposed to dry air for up to 6 hours, a continuous increase of internal ethylene was observed. In water-stressed leaves which do not abscise only a transient rise in ethylene occurred. The peak, which was attained after 30 to 120 minutes, depending on the species studied, was followed by a sharp decline to the initial level. The principal site of ethylene production in response to a short period of water stress was in the blades rather than the petioles in both types of leaves. The internal ethylene level in leaves was reduced by pretreatment with the ethoxy analog of rhizobitoxine (an inhibitor of ethylene biosynthesis) or by maintaining the leaves under subatmospheric pressure. The results obtained by these methods showed that ethylene was not involved in the mechanism of stomatal movement in either turgid or in stressed leaves. Also, the increase in leaf abscisic acid content and the depletion of gibberellins induced by water stress were not related to the internal concentration of ethylene in the detached leaf. The different patterns of drought-induced ethylene production observed in the blades of leaves which exhibit abscission compared with those which do not exhibit abscission may indicate the involvement of ethylene in a primary event in the process of leaf abscission induced by water stress.  相似文献   

3.
Patterns of ehtylene production in senescing leaves   总被引:15,自引:14,他引:1       下载免费PDF全文
Changes in the patterns of ethylene production, chlorophyll content, and respiration were studied in relation to the senescence of intact leaves and leaf discs. The primary leaves of pinto bean, which abscise readily during natural senescence, and tobacco and sugar beet leaves, which do not abscise, were used. A decrease in the rate of ethylene production and respiration, during the slow phase of chlorophyll degradation, was observed in leaf-blade discs cut from mature leaves and aged in the dark. During rapid chlorophyll loss both ethylene production and respiration increased and then decreased. These climacteric-like patterns were shown by leaf discs of all three species. Discs taken from leaves that had been senescing on the plant also showed a climacteric-like rise in ethylene production but not in respiration, which decreased continuously with leaf age. Climacteric-like patterns in the rise of ethylene and respiration for leaf discs were also shown by the petioles of both bean and tobacco leaves. This indicates that the rise of ethylene and respiration is characteristic of the general process of senescence in leaves and is not restricted to the abscission process. In contrast to the ethylene-forming systems in climacteric fruits and many flowers, the one in leaves declines sharply in the early stages of senescence. The subsequent rise of ethylene production appears to be associated with the rapid phase of chlorophyll breakdown, and may indicate the final stage of the senescence process during which ethylene could be actively involved in inducing leaf abscission.  相似文献   

4.
Young R 《Plant physiology》1971,48(6):724-727
Citrus leaves exposed to subfreezing temperatures evolved ethylene at rates between 0.1 and 38.3 microliters per kilogram fresh weight per hour whereas untreated leaves evolved between 0.01 and 0.50 microliter per kilogram fresh weight per hour. Leaves not injured by freezing temperatures did not abscise, and ethylene evolution was near normal after 2 days. Freeze-injured leaves continued evolving high ethylene levels 4 or 5 days subsequent to freeze injury, and many of the freeze-killed leaves abscised. Supportive evidence suggested freeze-induced ethylene was involved in freeze-induced leaf abscission; whereas freeze-inhibited abscission was not due to a lack of ethylene but injury to other metabolic systems necessary for abscission.  相似文献   

5.
Mechanical wounding and abscission in citrus   总被引:1,自引:0,他引:1  
Fruit detachment force (FDF), ethylene evolution, fruit and leaf drop were determined in Citrus sinensis for periods up to 96 h after mechanical wounding. Injury by removing a thin section of mature fruit flavedo reduced FDF, increased ethylene evolution and promoted abscission. Injuring flavedo 1 cm below the calyx was more effective at reducing FDF than injuring flavedo at the equator or the blossom‐end of mature fruit. Injuring the calyx or peduncle of mature fruit, or injuring three leaves closest to the mature fruit did not reduce FDF. Immature fruitlets either did not abscise or underwent low rates of abscission in response to mechanical wounding, depending on age. Inhibiting ethylene binding in wounded mature fruit with 1‐methylcyclopropene (1‐MCP) increased ethylene evolution compared with wounded fruit alone, but the reduction in FDF was similar. When an ethylene biosynthesis inhibitor (aminoethoxyvinylglycine, AVG) was used, reduction in FDF of wounded mature fruit exposed to AVG was similar to that of wounded fruit alone but ethylene production was markedly reduced. Wounding mature leaf blades in the presence or absence of 1‐MCP resulted in elevated but equal ethylene evolution up to 48 h after wounding, however, no leaf drop occurred. Thereafter, ethylene evolution was higher in 1‐MCP‐treated wounded leaves. Removing up to 77% of the total mature leaf area did not cause leaf drop, nor did wounding tissue across the laminar or petiolar abscission zones. Leaflets of 5 mm length reached nearly 100% abscission after mechanical wounding, whereas wounding leaves 20 mm length resulted in 15% abscission. The data suggest that mechanical wounding of flavedo results in mature fruit abscission, and ethylene binding may not be mandatory to initiate abscission in citrus fruit. The differential response of fruit and leaves at different ages to wounding may be related to potential contribution to carbohydrate accumulation, and production and sensitivity of tissues to an abscission signal(s).  相似文献   

6.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

7.
Suttle JC 《Plant physiology》1985,78(2):272-276
The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.  相似文献   

8.
W. J. Burrows  D. J. Carr 《Planta》1967,73(4):369-375
Summary The responses of three types of explants of blue lupin leaves are considered: pulvinar explants, consisting of the pulvinar region alone, petiolar explants, consisting of the pulvinar region plus petiole and laminar explants consisting of the pulvinar region plus leaflets. Abscission is accelerated by removal of the leaflets; removal of the petiole has much less effect. Pulvinar explants fail to abscise in darkness but are the first to abscise in the light. This is in accordance with previous evidence of high light sensitivity of the pulvinar region. Kinetin applied directly to the pulvinar region delays abscission, as does kinetin supplied via the transpiration stream. As shown by experiment, this is probably due to transported kinetin reaching the abscission zones of the pulvinar region. The effects of photoperiodic treatments on explants or whole leaves are described. Abscission in the whole leaf is delayed by short daily photoperiods; the delay reaches a maximum with 8 hours light per day. However, abscission is more rapid in continuous light than in darkness. Removal of the leaflets greatly accelerates abscission even in darkness. The pulvinar explant fails to abscise with photoperiods of 4 hours or less; although it appears to have a long day response, preliminary attempts failed to demonstrate that this is a true photoperiodic response (replacement of a long day by a short day together with a light break). The complex responses of leaves and explants to day length lend further support to the hypothesis that light has effects on abscission other than in photosynthesis.  相似文献   

9.
Guinn G 《Plant physiology》1982,69(2):349-352
The relationships of fruit age, abscisic acid (ABA) concentration, ethylene evolution, and abscission rates were studied in an effort to determine why cotton (Gossypium hirsutum L., cv. Deltapine 16) fruits rarely abscise more than 15 days after anthesis. Because abscission of cotton fruits is increased by conditions that limit photosynthesis, greenhouse-grown plants with fruits of various ages were placed in dim light for 3 days to induce high rates of fruit abscission. Abscission rates, ABA concentrations, and ethylene evolution rates were determined for fruits of various ages. Almost all of the young fruits abscised, but abscission rate declined with age until almost no abscission was observed in fruits that were 15 or more days past anthesis.  相似文献   

10.
Water Stress Enhances Ethylene-mediated Leaf Abscission in Cotton   总被引:11,自引:10,他引:1       下载免费PDF全文
Abscission of cotyledonary leaves from cotton (Gossypium hirsutum L. cv. Stoneville 213) seedlings occurred following relief from water stress. The amount of abscission was related to the magnitude of the plant water deficit. Leaf abscission promoted by exogenous ethylene was enhanced in seedlings subjected to water stress. Treatment with ethylene (2.0 to 3.2 microliters of ethylene per liter of air for 24 hours) raised the threshold plant water potential required to induce abscission from —17 to —7 bar, indicating that the stress caused the tissue to become predisposed to ethylene action. Based on the abscission response curve for seedlings treated with ethylene while under water stress, this apparent predisposition was developed as the plant water potentials reached the —7 to —10 bar range. The abscission-promoting effects of ethylene in combination with water stress were reversed with 15% CO2 at plant water potentials above —12 bar, but the CO2 reversal was lost at lower water potentials. These results are compatible with the concept that ethylene plays a regulatory role in leaf abscission induced by water stress.  相似文献   

11.
Morgan PW 《Plant physiology》1969,44(3):337-341
Ethrel, a mixture of 2-chloroethanephosphonic acid and its ethyl ester, hastens abscission of leaves, debladed petioles, and flower buds of cotton plants (Gossypium hirsutum, L.). Both young and old leaves abscissed while still green. Application of Ethrel stimulated evolution of ethylene, and this response preceded abscission. Air concentrations of ethylene around enclosed, treated-plants were adequate to produce abscission in plants. Non-treated plants defoliated when enclosed with plants sprayed with Ethrel. The stimulation of abscission of explant petioles by Ethrel was reversed by naphthalene acetic acid. The stimulation of abscission by Ethrel was concluded to be mediated by ethylene.  相似文献   

12.
Leaves of seed plants are generally characterized as organs of determinate growth. In this regard, Guarea and related genera seem unusual in that the pinnately compound leaves of these plants contain a bud at their tip from which new pinnae expand from time to time. Previous studies (based upon superficial examinations of leaf-tip buds) have produced contradictory conclusions regarding how long the leaf apex remains meristematic and produces new pinna primordia. In order to determine whether leaf development in Guarea is truly indeterminate, we microscopically examined leaf-tip buds of G. guidonia and G. glabra. In both species, the leaf apex remains meristematic and continues to produce new pinna primordia as the leaf ages. Unexpanded leaves of G. guidonia contained an average of 23 pinna primordia, while the oldest leaves we examined had initiated an average of 44 total pinnae. In G. glabra, unexpanded leaves contained 8 pinnae, whereas an average of 28 pinnae had been initiated on the oldest leaves. These results indicate that leaf development in Guarea is truly indeterminate. Periodic examination of individual intact leaves indicated that the leaves commonly continue their growth for 2 or more years (observed maximum = 51 months). As new leaflets are initiated at the shoot apex (and subsequently expand in rhythmic flushes), older (basal) leaflets may abscise. In addition, the petiole and rachis of the leaf thicken and become woody as a result of the activity of a vascular cambium. Guarea leaves therefore seem to function as the analogue of a typical twig (stem) in general habit as well as in their indeterminate apical growth and secondary thickening.  相似文献   

13.
Litchi is one of the most important subtropical evergreen fruit trees in Southern Asia. Litchi floral buds are a mix of axillary or apical panicle primordia, leaf primordia, and rudimentary leaves. Under usual winter and early spring conditions, the axillary panicle primordia prevail, and the rudimentary leaves abscise when low temperatures reach a certain threshold. The floral buds ultimately develop into pure panicles. Understanding the regulatory mechanism of rudimentary leaf senescence is of great importance for litchi flowering. In this study, litchi potted trees at the floral differentiation stage were treated with low and high temperatures in order to induce senescence or development of leaves. The microstructure of the petiole base of the rudimentary leaves was determined. The results show several layers of flattened cells forming in the abscission zone of the rudimentary leaves that were treated with low temperatures as well as an obvious boundary regarded as the abscission layer zone. We also determined the gene expression in the leaves with different developmental fate. The results show that the LcRboh, LcMC-1-like, and LcPirin genes were significantly induced in the rudimentary leaves treated with low temperatures, and the expression increased with the proceeding of senescence. The expression of the genes encoding class Ι β-1,3-glucanase and β-xylosidase also increased with the senescence, suggesting their possible involvement in the low temperature-induced senescence of the rudimentary leaves.  相似文献   

14.
Rosettes of flooding-resistant Rumex palustris plants show a submergence-induced stimulation of elongation, which is confined to the petioles of young leaves. This response increases the probability of survival. It is induced by ethylene that accumulates in submerged tissues. Flooding-intolerant Rumex acetosella plants do not show this response. We investigated whether differences in shoot elongation between the species, between old and young leaves and between the petiole and leaf blade of a R. palustris plant result from differences in internal ethylene concentration or in sensitivity to the gas. Concentrations of free and conjugated ACC in petioles and leaf blades of R. palustris indicated that ethylene is synthesized throughout the submerged shoot, although production rates varied locally. Nevertheless, no differences in ethylene concentration were found between submerged leaves of various ages. In contrast, dose-response curves showed that only elongation of young petioles of R. palustris was sensitive to ethylene. In R. acetosella, elongation of all leaves was insensitive to ethylene. We conclude that variation in ethylene sensitivity rather than content explains the differences in submergence-induced shoot elongation between the two Rumex species and between leaves of R. palustris.  相似文献   

15.
Herbivore damage is known to cause the premature loss of mature leaves. However, the effects of herbivory on abscission during the early stages of leaf development remain unexplored, even though herbivores frequently prefer unlignified, immature leaves. In a field experiment, we removed 50% of the tissue from leaves at various stages of development on seedlings of Shorea hopeifolia (Dipterocarpaceae), a dominant rain forest tree in Indonesian Borneo. Four weeks following simulated herbivory, >88% of unlignified expanding leaves had been abscised, compared to only 20% of fully expanded, unlignified leaves and 0% of recently lignified, mature leaves. In a separate experiment over 9 wk, simulated herbivory did not increase abscission rates of mature leaves, even when 75% of leaf tissue was removed. Because most (58%) of S. hopeifolia seedlings under natural conditions had lost 1% or less of the tissue from their mature leaves, herbivore damage probably has little effect on the abscission of mature leaves. In contrast, the tendency for damaged expanding leaves to abscise may explain why 49% of S. hopeifolia seedlings had already lost their youngest leaf. If similar patterns occur in other species, herbivore attacks on developing leaves may contribute substantially to both leaf loss and the cumulative impact of herbivory on the growth and survival of whole plants.  相似文献   

16.
南京地区落叶栎林木本植物叶物候研究   总被引:7,自引:1,他引:6       下载免费PDF全文
叶物候参数长期以来被认为与植物的碳获取的最大化有关,能反映物种的资源利用策略。温带地区因为寒冷冬天的限制,延长叶寿命成为一些物种进行生长发育和繁衍的基础。为探讨叶寿命延长的可能途径(早出叶、晚落叶,或两者兼有),该研究以南京地区两个落叶栎(Quercus spp.)林为研究对象,观测了其中木本植物的出叶物候、落叶物候,并分析了它们与叶寿命之间的关系。结果发现:1)不同物种的出叶开始时间相差较大,出叶早的物种早结束出叶过程;2)不同物种的落叶开始时间相差较大,早开始落叶的物种,落叶持续时间较长,落叶结束时间则相对集中。3)相关分析和回归分析都表明,叶寿命与出叶时间和落叶时间显著关联,但早出叶对叶寿命的延长可能更为重要,因为早出叶相对于晚落叶在物种资源利用上比较具有优势。4)不同物种的出叶时间和落叶时间没有显著相关,可能因为出叶过程和落叶过程是由不同的启动因子引起。这说明延长叶寿命不一定同时通过早出叶和晚落叶来达到。  相似文献   

17.
The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.  相似文献   

18.
Induction of abscission at hypobaric pressures   总被引:2,自引:3,他引:2       下载免费PDF全文
Cooper WC  Horanic G 《Plant physiology》1973,51(6):1002-1004
The use of hypobaric pressures has increased the precision of abscission research by enabling us to differentiate between abscission action of ethylene and abscisic acid. When cycloheximide is sprayed on fruit attached to trees, enhanced levels of ethylene occur in the fruit and, subsequently, the fruit abscises. When ethylene in the fruit is eliminated by hypobaric pressures, the fruit does not abscise. Thus, ethylene is the effector of fruit abscission that results from cycloheximide treatment. When abscisic acid is applied to the fruit through stem uptake and ethylene is removed by hypobaric pressures, rapid fruit abscission occurs, which is presumably caused by abscisic acid itself. Thus, either ethylene or abscisic acid will induce abscission of citrus. Likewise, the abscission of debladed petioles of Coleus plants appears to be effected either by ethylene or abscisic acid.  相似文献   

19.
Lonicera maackii (Rupr.) Maxim. (Amur honeysuckle) is native to Asia and an important ornamental in China. However, the anatomy of leaf abscission (shedding) in L. maackii had not been studied previously. Such work is needed not only because knowledge of the leaf abscission process is important for a horticultural species like L. maackii but also because leaf abscission is probably the least understood abscission process, as it occurs so rapidly. Therefore, our objective was to use scanning electron microscopy (SEM) to examine the progression of leaf abscission in L. maackii at the cellular level. L. maackii branches with leaves were regularly collected in Beijing, China over the 2-month period in which leaves abscise, and examined with SEM. We found that, unlike in model species, the cortex is involved in abscission, forming an “abaxial gap.” We discovered that there is no discrete abscission zone prior to the onset of abscission and that no cell divisions precede abscission. An abscission zone did become evident well after the abscission process had begun, but its cells were enlarged, not constricted as in typical abscission zones. In the abaxial gap, intact cells separated at their middle lamella, but in the abscission zone, cell separation involved the entire wall, which is not typical. We did observe expected mechanical fission of vascular tissues. While the leaf abscission process we observed in L. maackii has similarities with model systems, aspects deviate from the expected.  相似文献   

20.
Lavee S  Martin GC 《Plant physiology》1981,67(6):1204-1207
1-Aminocyclopropane-1-carboxylic acid (ACC) supplied via the cut base of detached olive shoots caused a burst of ethylene from leaves, but other cyclopropanes tested did not exhibit this effect. Ethephon (ET) and another ethylene-releasing compound caused a prolonged increase in ethylene evolution. ACC had only a very limited effect on leaf abscission regardless of concentration, whereas shoots placed with cut bases in ET for 60 to 80 minutes exhibited 100% leaf abscission within 90 hours. Shoots with inflorescences treated with ET just prior to anthesis began to wilt in vitro within 20 to 30 hours and failed to exhibit leaf abscission. At earlier stages of development, ET induced more leaf abscission on reproductive shoots than on vegetative shoots. It is suggested that the duration of ethylene evolution from the leaves governs their potential for abscission and that bursts of ethylene evolution even though large in amount may not induce abscission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号