首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
His-32 of bovine or human alpha-lactalbumin reacts with the tryptophan reagent 2-hydroxy-5-nitrobenzyl bromide at pH 7. The reaction depends on the native conformation of the alpha-lactalbumin molecule and it is restricted to position 1 of the imidazole nucleus. The synthesis and characterization of 1-(2-hydroxy-5-nitrobenzyl)-histidine, 3-(2-hydroxy-5-nitrobenzyl)-histidine and 1,3-bis(2-hydroxy-5-nitrobenzyl)-histidine are described.  相似文献   

2.
At pH values between 4.5 and 7.0, 2-hydroxy-5-nitrobenzyl bromide reacts selectively with tryptophan-215 in bovine α-chymotrypsin as demonstrated by the isolation of peptides containing modified amino acid residues. The degree of substitution at lower pH values indicates conformational changes in the enzyme observed previously by physico-chemical methods. The substitution of the native enzyme results in the loss of esterase activity. Nevertheless 2-hydroxy-5-nitro-benzyl chymotrypsin is still able to react with diisopropylphosphofluoridate.The catalytically inactive derivatives of α-chymotrypsin, DIP, TPCK and anhydro-chymotrypsin, as well as the complex of α-chymotrypsin with basic pancreatic trypsin inhibitor, are not modified by 2-hydroxy-5-nitrobenzyl bromide under the same conditions as those used for the native enzyme.HNB-chymotrypsin and anhydro-chymotrypsin, both catalytically inactive, form stoichiometric complexes with the basic pancreatic trypsin inhibitor whereas both PMS and DIP α-chymotrypsin did not have this complexing property. From the results of this and a preceding study (Ako et al., 1972) it is concluded that the intactness of the catalytic function of ehymotrypsin is not obligatory for the binding of basic pancreatic inhibitor.  相似文献   

3.
The reaction of human alpha-lactalbumin with the tryptophan reagent 2-hydroxy-5-nitrobenzyl bromide has been studied. This protein has 3 tryptophan residues (Trp-60, Trp-104 and Trp-118) all of which are accessible to the reagent at pH 2.7 or 7. Trp-60 of human alpha-lactalbumin is much more reactive than Trp-60 of bovine alpha-lactalbumin (Barman, T. E. (1972) Biochim. Biophys. Acta 257, 297-313). As with bovine alpha-lactalbumin, at pH 2.7, 2-hydroxy-5-nitrobenzyl bromide is specific for tryptophan but at pH 7 His-32 also reacts. When treated with the tryptophan reagent, both alpha-lactalbumins lose their specifier protein activities in the lactose synthase (UDPgalactose:D-glucose 4-beta-galactosyltransferase, EC 2.4.1.22) reaction.  相似文献   

4.
2-Hydroxy-5-nitrobenzyl bromide, at a 100-fold molar excess, was observed to react withthrombin at pH 4.0 to give a modified enzyme which possessed 20% of the fibrinogen clotting activity and 80% of the esterase activity compared to a control preparation. Spectrophotometric analysis of the modified protein indicated that this effect on catalytic activity was associated with the incorporation of 1 mol of reagent per mol of thrombin. Amino acid analysis showed no loss of amino acids other than tryptophan. The reaction of N-bromosuccinimide with thrombin at 2-fold molar excess resulted in the modification of one tryptophan per mol of enzyme with the loss of 80% of the fibrinogen clotting activity with, as above, a considerably smaller loss of esterase activity. Oxidation of thrombin with N-bromosuccinimide decreased the extent of subsequent tryptophan modification with 2-hydroxy-5-nitrobenzyl bromide. Thrombin modified with 2-hydroxy-5-nitrobenzyl bromide showed a 3-4 fold increase in Km and a decrease in V for the ester substrate. The reaction of thrombin with 2-acetoxy-5-nitrobenzyl bromide, a substrate analogue, also resulted in the inactivation of the enzyme. The data are interpreted to show the presence of a tryptophan residue at or near the enzyme's substrate binding site.  相似文献   

5.
Reaction of Cerebratulus lacteus toxin B-IV with 2-hydroxy-5-nitrobenzyl bromide at pH 4.5 results in modification of toxin tryptophan residues and loss of biological activity. With relatively small reagent excesses, one tryptophan per molecule is modified without major effect on toxicity. Further reaction results in modification of a second residue of tryptophan and loss of at least 95% of the toxic activity. Modification of one or both tryptophan residues is without significant effect on the secondary structure of the protein. The specificity of each phase of the reaction has been assessed by fingerprint analysis of peptides derived from toxin modified to differing extents with 2-hydroxy-5-nitrobenzyl bromide. It is thus possible to show that tryptophan-5 reacts first and tryptophan-30 only under more rigorous conditions. It thus appears that tryptophan-30 is essential for full neurotoxic activity.  相似文献   

6.
The use of flow injection analysis to automated extraction methods for the determination of lithium ion utilizing crown ethers or cryptands is demonstrated. The ion-pair extraction of cryptand 211, lithium, and resazurin exhibits a linear range for lithium ion of 70 ppb to 2.1 ppm. This method could tolerate up to 1000 ppm sodium ion. The chromogenic crown ether, 1-(2-hydroxy-5-nitrobenzyl)-1-aza-4,7,10-trioxacyclododecane, exhibits a linear range for lithium ion of 0.3 to 2 ppm. A sodium ion concentration of 230 ppm can be tolerated. Both extraction systems were used in the automated determination of lithium in blood serum and urine. Both methods agreed well with the known and/or atomic absorption values.  相似文献   

7.
The need for chaotropic eluents in immunoaffinity chromatography is a consequence of the high affinities of antibodies towards their antigens. This affinity is decreased and elution of antiglucagon antibodies from a column of immobilized glucagon can be achieved under mild conditions when the steric complementarity to the antibody binding site is perturbed by selective chemical modification of the hormone. The effects of reaction with 2-hydroxy-5-nitrobenzyl bromide, tetranitromethane and hydrogen peroxide have been studied. Conversely, treatment of immobilized antibodies with 2-hydroxy-5-nitrobenzyl bromide facilitates the elution of glucagon during immunoaffinity chromatography. The general implications of these results are discussed.  相似文献   

8.
Chymotrypsinogen was observed to have two bands in a low-pH gel electrophoresis system, though the protein was pure by other criteria. Other proteins have also been reported to give artifacts under these conditions. Removal of persulfate from the gel by pre-electrophoresis or by substituting riboflavin eliminated the artifacts. The affected amino acid residue was identified as tryptophan by titration of persulfate-treated proteins with 2-hydroxy-5-nitrobenzyl bromide and by the spectral method of Edelhoch. Persulfate-treated chymotrypsinogen had the same mobility as the artifact, while oxidation of Met-192 with hydrogen peroxide produced a protein with a different mobility.  相似文献   

9.
The predominant reaction of lysozyme with 2-hydroxy-5-nitrobenzyl bromide, (HNB-Br), leads to the formation of an enzymatically inactive, labile product substituted at tryptophan 62. This species can revert to the native enzyme with the simultaneous loss of 2-hydroxy-5-nitrobenzyl alcohol (HNB-OH). The lability of the product in acidic or neutral solution depends upon three features of the HNB-lysozyme molecule: (1) the 2-hydroxy group of the HNB moiety, (2) a group which is readily reduced by borohydride, presumably an indolenine and (3) a particular structural conformation of the complex. A tentative mechanism for the hydrolysis reaction is presented.  相似文献   

10.
1. Two moles of 2-hydroxy-5-nitrobenzyl group bound selectively to one mole of heavy meromyosin when it was treated with 2-hydroxy-5-nitrobenzyl bromide, a specific reagent for tryptophanyl residues. The binding with ADP, the size of the initial burst of Pi liberation and the difference absorption spectrum with and without ADP of the bound 2-hydroxy-5-nitrobenzyl groups were measured with heavy meromyosin modified with various amounts of reagent. The properties of the modified heavy meromyosin did not change until the molar binding ratio of the reagent, rH, was about 1, but the properties changed remarkably when rH increased from 1 to 2. 2. Subfragment-1 was prepared from the modified heavy meromyosin by trypsin [EC 3.4.21.4] digestion. The molar binding ratio of the reagent in subfragment-1, rS, was found to be less than 0.1 when rH of the starting heavy meromyosin was less than 0.8. However, rS was about 0.5 in subfragment-1 prepared from heavy meromyosin of rH about 2. The results indicate that only one mole of 2-hydroxy-5-nitrobenzyl group, which was bound with lower reactivity than the other, was bound to a head part of heavy meromyosin. 3. Subfragment-1 fraction prepared from the modified heavy meromyosin could be separated into two fractions by DE-32 cellulose column chromatography; the subfragment-1 portion which eluted later showed a higher rS than that eluted in front. The binding with ADP, the size of the initial burst of Pi liberation and the difference absorption spectrum induced by ATP were measured with the modified subfragment-1 separated by DE-32 cellulose column chromatography. The ADP-binding ability and the size of the initial burst were not dependent on rS, and coincided with those of subfragment-1 prepared from unmodified heavy meromyosin. 4. The results of ADP binding studies suggest that heavy meromyosin is constituted from nonidentical subunits, and that there is an interaction between them which controls the ADP binding. Two tryptophanyl residues having specific reactivity toward 2-hydroxy-5-nitrobenzyl bromide are assumed to be involved in the interaction.  相似文献   

11.
A procedure is described to determine tryptophan residues in proteins using a tryptophan reagent, 2-hydroxy-5-nitrobenzyl bromide. The method involves the treatment of the unfolded protein with the reagent in 9 m urea at acid pH; incubation of the mixture at room temperature for 2 hr and the removal of the excess reagent by centrifugation and gel filtration. The amount of tryptophan in a protein is determined from the optical density of the labeled protein at 280 and 410 nm, and from the known optical density of 1 mg/ml of the protein at 280 nm and of the reagent at 280 and 410 nm. The efficacy of the method was tested with eight proteins whose tryptophan content is known.  相似文献   

12.
The reduction of 2-hydroxy-5-nitrobenzyl tryptophyl cytochrome c by the chromous ion was studied by stopped-flow techniques. At pH6.5 the reduction of 2-hydroxy-5-nitrobenzyl tryptophyl cytochrome c is complex, showing the presence of three distinct phases. Two chromium concentration-dependent phases are observed (1.1 X 10(5) M-1-S-1, phase 1; 1.25 X 10(4)M-1-S-1, phase 2) and one slow first-order process (0.25S-1, phase 3). A comparison of the static and kinetic difference spectra, along with the data from the reduction of the reoxidized reduced protein, suggests that the slow chromium concentration-independent phase is due to a slow conformational event after fast reduction of the NO2 group. The rates of the chromium concentration-dependent phases show a marked variation with pH above 7.5. The activation energies for the three processes were also measured at 33.2, 38.6 and 69.7 kJ-mol-1 for phases 1, 2 and 3 respectively. The reaction of reduced 2-hydroxy-5-nitrobenzyl tryptophyl cytochrome c with CO was foollowed by means of both stopped-flow and flash photolysis. The combination with CO at pH 6.8 as measured in stopped-flow experiments showed two phases, one CO-dependent phase (phase 2, 2.4 X 10(2)M-1-S-1) and one CO-independent phase (phase 1, 0.015S-1). Investigation of the pH-dependence of the phases showed both the rates and amounts of each phase to be pH-invariant. CO recombination, after photolytic removal, was found to be biphasic; a CO-dependent phase (phase 2, 2.4 X 10(2)M-1-S-1) and a CO-independent phase (phase 1, 1.0s-1) were observed. A tentative model which can accommodate these observations is proposed.  相似文献   

13.
N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide have been used for modification of tryptophan residues in human haptoglobin (Hp) type 2-1. Modification of three exposed tryptophan residues reduced considerably both the Hp-haemoglobin interaction and binding of the antibody against the native protein. Modification of the remaining 7-8 tryptophan residues resulted in a complete loss of those properties. Antisera directed against Hp with the modified tryptophan residues appeared to be highly specific in immunological reactions.  相似文献   

14.
Cow kappa-casein has been modified by photo-oxidation in the presence of rose bengal and by the chemical reagents diethyl pyrocarbonate, 2-hydroxy-5-nitro-benzyl bromide and iodoacetic acid. Photo-oxidation resulted in the destruction of histidine and tryptophan residues and all of the histidines could be ethoxy-formylated by treatment with diethyl pyrocarbonate. Both procedures caused a loss in the susceptibility of the Phe-Met linkage of kappa-casein to chymosin hydrolysis. Treatment of kappa-casein with 2-hydroxy-5-nitrobenzyl bromide and iodoacetic acid caused the loss of tryptophan and methionine residues respectively but, in both cases, the susceptibility of the modified protein to chymosin hydrolysis remained unaffected. Of the amino acids examined it is concluded that only the histidine residues of cow kappa-casein are important for the hydrolytic action of chymosin and, furthermore, the treatment with diethyl pyrocarbonate suggests that only one of the three histidines plays an essential role.  相似文献   

15.
Surface accessible amino acids can play an important role in proteins. They can participate in enzyme's active center structure or in specific intermolecular interactions. Thus, the information about selected amino acids' surface accessibility can contribute to the understanding of protein structure and function. In this paper, we present a simple method for surface accessibility mapping of tryptophan side chains by their chemical modification and identification by MALDI-TOF mass spectrometry. The reaction with 2-hydroxy-5-nitrobenzyl bromide, a common and highly specific covalent modification of tryptophan, seems to be very useful for this purpose. The method was tested on four model proteins with known spatial structure. In the native proteins (1) only surface accessible tryptophan side chains were found to react with the modification agent and (2) no buried one was found to react at lower reagent concentrations. These results indicate that the described method can be a potent tool for identification of surface-located tryptophan side chain in a protein of unknown conformation.  相似文献   

16.
Chemical modification of human degraded form of plasminogen with NH2-terminal lysine (Lys-plasminogen) and the elastase fragments kringle 1 + 2 + 3 and kringle 4 with the tryptophan reagent [14C]dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide results in the incorporation of label and the parallel loss of lysine binding ability. In the case of kringle 4, only one-half of the lysine binding sites could be inactivated, but the modified and unmodified forms could be separated by affinity chromatography. The modified form contained 1 mol of 2-hydroxy-5-nitrobenzyl groups/mol of kringle 4 and did not bind to lysine-Sepharose. Lysine analogs such as 6-aminohexanoic acid protected kringle 4 against modification. Peptide-mapping studies on this form showed that essentially all of the label was in two chymotryptic peptides containing a tryptophan corresponding to Trp426 in the plasminogen sequence. Competition experiments with anti-kringle 4 antibodies having an affinity for the lysine binding site showed that the binding of 2-hydroxy-5-nitrobenzyl-kringle 4 to antibodies was about 10 times weaker than for unmodified kringle 4. These results indicate that the integrity of specific tryptophan residue is critical to the binding of lysine and related amino acids to kringle 4of human plasminogen.  相似文献   

17.
A single tryptophan residue on antithrombin has been modified with dimethyl-(2-hydroxy-5-nitrobenzyl)sulfonium bromide. This alteration led to a 500-fold reduction in the heparin-dependent acceleration of thrombin-modified antithrombin interactions, as well as a 10-fold decrease in the avidity of the modified protease inhibitor for mucopolysaccharide. Preincubation of antithrombin with the octasaccharide binding domain of heparin prior to treatment with dimethyl-(2-hydroxy-5-nitrobenzyl)sulfonium bromide was able to suppress modification of the critical tryptophan and preserve the functional capacities of the protease inhibitor. Fluorescence quenching experiments indicated that the modifiable tryptophan groups of antithrombin were exposed to the solvent environment. Based upon these data, it was proposed that the loss of “heparin cofactor” activity of antithrombin must be predominantly due to an inability of the modified protease inhibitor to undergo a conformational transition required for mucopolysaccharide-dependent “activation” of the macromolecule.  相似文献   

18.
The use of 2-hydroxy-5-nitrobenzyl bromide for the modification of tryptophan residues in integral membrane proteins is exemplified by its application to bacteriorhodopsin from Halobacterium halobium. Complete elimination of the unreacted reagent requires delipidation of the sample with detergents and posterior chromatography. This method also allows separation of the modified from the unmodified bacteriorhodopsin molecules. Modified molecules have lost the retinal, and are thus bleached, whereas the unmodified molecules appear to retain all the characteristics of solubilized native bacteriorhodopsin.  相似文献   

19.
A method is described to selectively modify one of the three tryptophan residues of the subunit of glyceraldehyde-3-phosphate dehydrogenase from yeast. As modifying agent dimethyl (2-hydroxy-5-nitrobenzyl) sulfonium bromide was used. The residue which is modified by the procedure described has been identified as Trp-193. There are either one or two molecules of the modifying agent being added to this tryptophan side chain. The modification apparently does not cause a detectable conformational change of the protein as judged from the methods employed. However, the enzymatic activities in the dehydrogenase as well as in the esterase reactions are lost after the modification. It could be established that the modification rendered the enzyme unable to bind the oxidized coenzyme. Also the charge-transfer interaction between enzyme and coenzyme could no longer be observed.  相似文献   

20.
Previous studies on the isolation of peptides containing tryptophanyl residues modified with 2-hydroxy-5-nitrobenzyl bromide demonstrated multiple products of reaction at the same residue as well as technical difficulties in the primary structure analysis of peptides containing the modified tryptophanyl residue. The present study was undertaken to explore the reaction of 2-hydroxy-5-nitrobenzyl bromide with the single tryptophanyl residue in a synthetic peptide, experimental allergenic encephalitogenic peptide. The modification of this peptide was accomplished in sodium acetate, pH 4.75, and reagent removed by gel filtration. Amino acid analysis of the modified peptide suggested that only the tryptophanyl residue had been modified under these experimental conditions. The modified peptide could be separated into multiple derivatives by high-performance liquid chromatography. Although it is clear that some of the observed heterogeneity reflects a difference in the degree of substitution at the single tryptophanyl residue, several of the derivatives appear to have the same extent of substitution. It is suggested that the heterogeneity observed is a reflection of the establishment of a new diastereoisomeric center in the peptide. These results are consistent with previous observations from other laboratories and provide a basis for the explanation of apparent heterogeneity of peptides obtained from modified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号