首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here, we report that hydrodynamic conditions that mimic the motion‐induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and Type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features. Biotechnol. Bioeng. 2013; 110: 1476–1486. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Lumican is a glycoprotein that is found in the extracellular matrix of many connective tissues, including cartilage. It is a member of the small leucine-rich repeat proteoglycans family and along with two others, decorin and fibromodulin, has the capacity to bind to fibrillar collagens and limit their growth. Cartilage tissue engineering provides a potential method for the production of three-dimensional tissue for implantation into eroded joints. Many studies have demonstrated the growth of cartilage in vitro. However in all cases, biochemical analysis of the tissue revealed a significant deficit in the collagen content. We have now tested the hypothesis that the reduced collagen accumulation in engineered cartilage is a result of over-expression of decorin, fibromodulin or lumican. We have found that the lumican gene and protein are both over-expressed in engineered compared to natural cartilage whereas this is not the case for decorin or fibromodulin. Using a small hairpin lumican antisense sequence we were able to knockdown the lumican gene and protein expression in chondrocytes being used for tissue engineering. This resulted in increased accumulation of type II collagen (the major collagen of cartilage) whilst there was no significant alteration in the proteoglycan content. Furthermore, the antisense knockdown of lumican resulted in an increase in the average collagen fibril diameter measured by transmission electron microscopy. These results suggest that lumican plays a pivotal role in the development of tissue engineered cartilage and that regulation of this protein may be important for the production of high-quality implants.  相似文献   

3.
Due to the increasing number of heart valve diseases, there is an urgent clinical need for off-the-shelf tissue engineered heart valves. While significant progress has been made toward improving the design and performance of both mechanical and tissue engineered heart valves (TEHVs), a human implantable, functional, and viable TEHV has remained elusive. In animal studies so far, the implanted TEHVs have failed to survive more than a few months after transplantation due to insufficient mechanical properties. Therefore, the success of future heart valve tissue engineering approaches depends on the ability of the TEHV to mimic and maintain the functional and mechanical properties of the native heart valves. However, aside from some tensile quasistatic data and flexural or bending properties, detailed mechanical properties such as dynamic fatigue, creep behavior, and viscoelastic properties of heart valves are still poorly understood. The need for better understanding and more detailed characterization of mechanical properties of tissue engineered, as well as native heart valve constructs is thus evident. In the current review we aim to present an overview of the current understanding of the mechanical properties of human and common animal model heart valves. The relevant data on both native and tissue engineered heart valve constructs have been compiled and analyzed to help in defining the target ranges for mechanical properties of TEHV constructs, particularly for the aortic and the pulmonary valves. We conclude with a summary of perspectives on the future work on better understanding of the mechanical properties of TEHV constructs.  相似文献   

4.
Modulation of the mechanical properties of tissue engineered cartilage   总被引:9,自引:0,他引:9  
Cartilaginous constructs have been grown in vitro using chondrocytes, biodegradable polymer scaffolds, and tissue culture bioreactors. In the present work, we studied how the composition and mechanical properties of engineered cartilage can be modulated by the conditions and duration of in vitro cultivation, using three different environments: static flasks, mixed flasks, and rotating vessels. After 4-6 weeks, static culture yielded small and fragile constructs, while turbulent flow in mixed flasks induced the formation of an outer fibrous capsule; both environments resulted in constructs with poor mechanical properties. The constructs that were cultured freely suspended in a dynamic laminar flow field in rotating vessels had the highest fractions of glycosaminoglycans and collagen (respectively 75% and 39% of levels measured in native cartilage), and the best mechanical properties (equilibrium modulus, hydraulic permeability, dynamic stiffness, and streaming potential were all about 20% of values measured in native cartilage). Chondrocytes in cartilaginous constructs remained metabolically active and phenotypically stable over prolonged cultivation in rotating bioreactors. The wet weight fraction of glycosaminoglycans and equilibrium modulus of 7 month constructs reached or exceeded the corresponding values measured from freshly explanted native cartilage. Taken together, these findings suggest that functional equivalents of native cartilage can be engineered by optimizing the hydrodynamic conditions in tissue culture bioreactors and the duration of tissue cultivation.  相似文献   

5.
Tissue engineered cartilage can be grown in vitro if the necessary physical and biochemical factors are present in the tissue culture environment. Cell metabolism and tissue composition were studied for engineered cartilage cultured for 5 weeks using bovine articular chondrocytes, polymer scaffolds (5 mm diameter x 2 mm thick fibrous discs), and rotating bioreactors. Medium pH and concentrations of oxygen, carbon dioxide, glucose, lactate, ammonia, and glycosoaminoglycan (GAG) were varied by altering the exchange rates of gas and medium in the bioreactors. Cell-polymer constructs were assessed with respect to histomorphology, biochemical composition and metabolic activity. Low oxygen tension ( approximately 40 mmHg) and low pH ( approximately 6.7) were associated with anaerobic cell metabolism (yield of lactate on glucose, YL/G, of 2.2 mol/mol) while higher oxygen tension ( approximately 80 mmHg) and higher pH ( approximately 7.0) were associated with more aerobic cell metabolism (YL/G of 1.65-1.79 mol/mol). Under conditions of infrequent medium replacement (50% once per week), cells utilized more economical pathways such that glucose consumption and lactate production both decreased, cell metabolism remained relatively aerobic (YL/G of 1.67 mol/mol) and the resulting constructs were cartilaginous. More aerobic conditions generally resulted in larger constructs containing higher amounts of cartilaginous tissue components, while anaerobic conditions suppressed chondrogenesis in 3D tissue constructs.  相似文献   

6.
Tissue engineering is a promising option for cartilage repair. However, several hurdles still need to be overcome to develop functional tissue constructs suitable for implantation. One of the most common challenges is the general low capacity of chondrocytes to synthesize cartilage-specific extracellular matrix (ECM). While different approaches have been explored to improve the biosynthetic response of chondrocytes, several studies have demonstrated that the nutritional environment (e.g., glucose concentration and media volume) can have a profound effect on ECM synthesis. Thus, the purpose of this study was to optimize the formulation of cell culture media to upregulate the accumulation of cartilaginous ECM constituents (i.e., proteoglycans and collagen) by chondrocytes in 3D culture. Using response surface methodology, four different media factors (basal media, media volume, glucose, and glutamine) were first screened to determine optimal media formulations. Constructs were then cultured under candidate optimal media formulations for 4 weeks and analyzed for their biochemical and structural properties. Interestingly, the maximal accumulation of proteoglycans and collagen appeared to be elicited by different media formulations. Most notably, proteoglycan accumulation was favored by high volume, low glucose-containing DMEM/F12 (1:1) media whereas collagen accumulation was favored by high volume, high glucose-containing F12 media. While high glutamine-containing media elicited increased DNA content, glutamine concentration had no apparent effect on ECM accumulation. Therefore, optimizing the nutritional environment during chondrocyte culture appears to be a promising, straight-forward approach to improve cartilaginous tissue formation. Future work will investigate the combined effects of the nutritional environment and external stimuli.  相似文献   

7.
Achieving sufficient functional properties prior to implantation remains a significant challenge for the development of tissue engineered cartilage. Many studies have shown chondrocytes respond well to various mechanical stimuli, resulting in the development of bioreactors capable of transmitting forces to articular cartilage in vitro. In this study, we describe the production of sizeable, tissue engineered cartilage using a novel scaffold-free approach, and determine the effect of perfusion and mechanical stimulation from a C9-x Cartigen bioreactor on the properties of the tissue engineered cartilage. We created sizable tissue engineered cartilage from porcine chondrocytes using a scaffold-free approach by centrifuging a high-density chondrocyte cell-suspension onto an agarose layer in a 50 mL tube. The gross and histological appearances, biochemical content, and mechanical properties of constructs cultured in the bioreactor for 4 weeks were compared to constructs cultured statically. Mechanical properties were determined from unconfined uniaxial compression tests. Constructs cultured in the bioreactor exhibited an increase in total GAG content, equilibrium compressive modulus, and dynamic modulus versus static constructs. Our study demonstrates the C9-x CartiGen bioreactor is able to enhance the biomechanical and biochemical properties of scaffold-free tissue engineered cartilage; however, no additional enhancement was seen between loaded and perfused groups.  相似文献   

8.
Utilization and production of amino acids by primary cultures of chicken growth plate epiphyseal chondrocytes grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum were investigated in both short-term (6-72 h) and long-term (3-24 day) cultures. Comparative studies were made on levels of free amino acids in chicken blood plasma and serum, and in extracellular fluids from different regions of growth plate cartilage and from two types of muscle. Chondrocytes rapidly consumed glutamine from the medium, and to lesser extents, various other amino acids. In contrast, free ammonia, alanine, glycine, glutamate, proline, and aspartate were released into the medium. The utilization of certain amino acids changed, depending on the stage of culture. Initially glutamate was released into the medium but after confluency was consumed. Conversely, histidine, lysine, and phenylalanine were initially utilized but later were released into the medium. Levels of total free amino acids in extracellular fluids of cartilage and muscle were higher than those in plasma and serum, while in cartilage the levels increased progressively from the resting to the hypertrophic zones. In these sequential regions certain amino acids increased proportionally, whereas others decreased. These interrelationships generally correlated closely with metabolism of amino acids by the cultured chondrocytes. They indicate that significant differences in amino acid metabolism exist between tissue areas and are reflected in the extracellular fluid composition. Accordingly, adjustment of specific amino acids may optimize culture conditions, enabling more normal phenotypic expression in vitro.  相似文献   

9.
One approach to functional tissue engineering of cartilage is to utilize bioreactors to provide environmental conditions that stimulate chondrogenesis in cells cultured on biomaterial scaffolds. We report the combined use of a three-dimensional in vitro model and a novel bioreactor with perfusion of culture medium and mechanical stimulation in long-term studies of cartilage development and function. To engineer cartilage, scaffolds made of a non-woven mesh of polyglycolic acid (PGA) were seeded with bovine calf articular chondrocytes, cultured for an initial 30-day period under free swelling conditions, and cultured for an additional 37 day period in one of the three groups: (1) free-swelling, (2) static compression (on 24 h/day, strain control, static offset 10%), and (3) dynamic compression (on 1 h/day; off 23 h/day; strain control, static offset 2%, dynamic strain amplitude 5%; frequency 0.3 Hz). Constructs were sampled at timed intervals and assessed with respect to structure, biochemical composition, and mechanical function. Mechanical simulation had little effect on the compositions, morphologies and on mechanical properties of construct interiors discs, but it resulted in distincly different properties of the peripheral rings and face sides. Contructs cultured with mechanical loading maintained their cylindrical shape with flat and parallel top and bottom surfaces, and retained larger amounts of GAG. The modular bioreactor system with medium perfusion and mechanical loading can be utilized to define the conditions of cultivation for functional tissue engineering of cartilage.  相似文献   

10.
In the repair of cartilage defects, autologous tissue offers the advantage of lasting biocompatibility. The ability of bovine chondrocytes isolated from hyaline cartilage to generate tissue-engineered cartilage in a predetermined shape, such as a human ear, has been demonstrated; however, the potential of chondrocytes isolated from human elastic cartilage remains unknown. In this study, the authors examined the multiplication characteristics of human auricular chondrocytes and the ability of these cells to generate new elastic cartilage as a function of the length of time they are maintained in vitro. Human auricular cartilage, harvested from patients 5 to 17 years of age, was digested in collagenase, and the chondrocytes were isolated and cultured in vitro for up to 12 weeks. Cells were trypsinized, counted, and passaged every 2 weeks. Chondrocyte-polymer (polyglycolic acid) constructs were created at each passage and then implanted into athymic mice for 8 weeks. The ability of the cells to multiply in vitro and their ability to generate new cartilage as a function of the time they had been maintained in vitro were studied. A total of 31 experimental constructs from 12 patients were implanted and compared with a control group of constructs without chondrocytes. In parallel, a representative sample of cells was evaluated to determine the presence of collagen. The doubling rate of human auricular chondrocytes in vitro remained constant within the population studied. New tissue developed in 22 of 31 experimental implants. This tissue demonstrated the physical characteristics of auricular cartilage on gross inspection. Histologically, specimens exhibited dense cellularity and lacunae-containing cells embedded in a basophilic matrix. The specimens resembled immature cartilage and were partially devoid of the synthetic material of which the construct had been composed. Analyses for collagen, proteoglycans, and elastin were consistent with elastic cartilage. No cartilage was detected in the control implants. Human auricular chondrocytes multiply well in vitro and possess the ability to form new cartilage when seeded onto a three-dimensional scaffold. These growth characteristics might some day enable chondrocytes isolated from a small auricular biopsy to be expanded in vitro to generate a large, custom-shaped, autologous graft for clinical reconstruction of a cartilage defect, such as for congenital microtia.  相似文献   

11.
Tissue engineering of heart valves utilizes biodegradable or metabolizable scaffolds for remodeling by seeded autologous cells. The aim of this study was to determine and compare extracellular matrix (ECM) formations, cellular phenotypes and cell location of native and tissue engineered (TE) valve leaflets. Ovine carotid arteries, ovine and porcine hearts were obtained from slaughterhouses. Cells were isolated from carotid arteries and dissected ovine, porcine and TE leaflets. TE constructs were fabricated from decellularized porcine pulmonary valves, seeded ovine arterial cells and subsequent 16 days dynamic in vitro culture using a pulsatile bioreactor. Native and TE valves were studied by histology (hematoxylin-eosin, resorcin-fuchsin, Movat pentachrome), NIR femtosecond multiphoton laser scanning microscopy and scanning electron microscopy (SEM). Cells of native and TE tissues were identified and localized by immunohistochemistry. Arterial, valvular and re-isolated TE-construct cells were processed for immunocytochemistry and Western blotting. ECM analysis and SEM revealed characteristical and comparable structures in native and TE leaflets. Most cells in native leaflets stained strongly positive for vimentin. Cells positive to alpha-smooth muscle actin (alpha-SMA), myosin and calponin were only found at the ventricular (inflow) side of ovine aortic and porcine pulmonary valve leaflets. Cells from TE constructs had a strong expression of vimentin, alpha-SMA, myosin, calponin and h-caldesmon throughout the entire leaflet. Comparable ECM formation and endothelial cell lining of native and TE leaflets could be demonstrated. However, immunostaining revealed significant differences between valvular cell phenotypes of native and TE leaflets. These results may be essential for further cardiovascular tissue engineering efforts.  相似文献   

12.
13.
Mathematical models to describe extracellular matrix (ECM) deposition and scaffold degradation in cell-polymer constructs for the design of engineered cartilage were developed and validated. The ECM deposition model characterized a product-inhibition mechanism in the concentration of cartilage molecules, collagen and glycosaminoglycans (GAG). The scaffold degradation model used first-order kinetics to describe hydrolysis (not limited by diffusion) of biodegradable polyesters, polyglycolic acid and polylactic acid. Each model was fit to published accumulation and degradation data. As experimental validation, cell-polymer constructs (n=24) and unseeded scaffolds (n=24) were cultured in vitro. Biochemical assays for ECM content and measurements of scaffold mass were performed at 1, 2, 4, 6, 8, or 10 weeks (n=8 per time point). The models demonstrated a strong fit with published data and experimental results (R(2)=0.75 to 0.99) and predicted the temporal total construct mass with reasonable accuracy (30% RMS error). This approach can elucidate mechanisms governing accumulation/degradation and may be coupled with structure-function relationships to describe time-dependent changes in construct elastic properties.  相似文献   

14.
Described here is a simple, high-throughput process to fabricate pellets with regular size and shape and the assembly of pre-cultured pellets in a controlled manner into specifically designed 3D plotted porous scaffolds. Culture of cartilage pellets is a well-established process for inducing re-differentiation in expanded chondrocytes. Commonly adopted pellet culture methods using conical tubes are inconvenient, time-consuming and space-intensive. We compared the conventional 15-mL tube pellet culture method with 96-well plate-based methods, examining two different well geometries (round- and v-bottom plates). The high-throughput production method was then used to demonstrate guided placement of pellets within a scaffold of defined pore size and geometry for the 3D assembly of tissue engineered cartilage constructs. While minor differences were observed in tissue quality and size, the chondrogenic re-differentiation capacity of human chondrocytes, as assessed by GAG/DNA, collagen type I and II immunohistochemistry and collagen type I, II and aggrecan mRNA expression, was maintained in the 96-well plate format and pellets of regular size and spheroidal shape were produced. This allowed for simple production of large numbers of reproducible tissue spheroids. Furthermore, the pellet-assembly method successfully allowed fluorescently labelled pellets to be individually visualised in 3D. During subsequent culture of 3D assembled tissue engineered constructs in vitro, pellets fused to form a coherent tissue, promoting chondrogenic differentiation and GAG accumulation.  相似文献   

15.
16.
This study presents a mathematical model for simulating cartilaginous culture of chondrocytes seeded in scaffolds and for investigating the effects of glucose and oxygen concentration and pH value on cell metabolic rates. The model can clearly interpret the unexplained experimental observation (Sengers BG, Heywood HK, Lee DA, Oomens CWJ, Bader DL. Nutrient utilization by bovine articular chondrocytes: A combined experimental and theoretical approach. J Biomech Eng. 2005;127:758–766.), which showed that the oxygen concentration within the scaffold may increase instead of continuously decreasing in static cartilaginous culture of chondrocytes. Results from simulation demonstrate that when cells metabolize glucose and form lactate under high glucose concentration conditions, the acidity in the culture environment increases, inhibiting cell metabolic rates in the process. Consequently, the rate of oxygen consumption decreases in later stages of cell culture. As oxygen can be replenished through the free surface of the culture medium, oxygen concentration within the scaffold increases rather than decreases over time in the acidic environment. Different initial glucose concentration yields different results. In low glucose concentration conditions, oxygen concentration basically keeps decreasing with culture time. This is because the pH in the environment does not significantly change because of slower glycolysis rate in low glucose concentration cases, forming less lactic acid. From the simulation results, additional information regarding in vitro culture of chondrocytes is obtained. The correlations between nutrient consumption, lactate secretion, and pH changes during cell culture are also understood and may serve as a reference for in vitro cell culture research of tissue engineering. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 452–462, 2013  相似文献   

17.
Adhesion of tissue-engineered cartilate to native cartilage   总被引:5,自引:0,他引:5  
Reconstruction of cartilaginous defects to correct both craniofacial deformities and joint surface irregularities remains a challenging and controversial clinical problem. It has been shown that tissue-engineered cartilage can be produced in a nude mouse model. Before tissue-engineered cartilage is used clinically to fill in joint defects or to reconstruct auricular or nasal cartilaginous defects, it is important to determine whether it will integrate with or adhere to the adjacent native cartilage at the recipient site. The purpose of this study was to determine whether tissue-engineered cartilage would adhere to adjacent cartilage in vivo. Tissue-engineered cartilage was produced using a fibrin glue polymer (80 mg/cc purified porcine fibrinogen polymerized with 50 U/cc bovine thrombin) mixed with fresh swine articular chondrocytes. The polymer/chondrocyte mixture was sandwiched between two 6-mm-diameter discs of fresh articular cartilage. These constructs were surgically inserted into a subcutaneous pocket on the backs of nude mice (n = 15). The constructs were harvested 6 weeks later and assessed histologically, biomechanically, and by electron microscopy. Control samples consisted of cartilage discs held together by fibrin glue alone (no chondrocytes) (n = 10). Histologic evaluation of the experimental constructs revealed a layer of neocartilage between the two native cartilage discs. The neocartilage appeared to fill all irregularities along the surface of the cartilage discs. Safranin-O and toluidine blue staining indicated the presence of glycosaminoglycans and collagen, respectively. Control samples showed no evidence of neocartilage formation. Electron microscopy of the neocartilage revealed the formation of collagen fibers similar in appearance to the normal cartilage matrix in the adjacent native cartilage discs. The interface between the neocartilage and the native cartilage demonstrated neocartilage matrix directly adjacent to the normal cartilage matrix without any gaps or intervening capsule. The mechanical properties of the experimental constructs, as calculated from stress-strain curves, differed significantly from those of the control samples. The mean modulus for the experimental group was 0.74 +/- 0.22 MPa, which was 3.5 times greater than that of the control group (p < 0.0002). The mean tensile strength of the experimental group was 0.064 +/- 0.024 MPa, which was 62.6 times greater than that of the control group (p < 0.0002). The mean failure strain of the experimental group was 0.16 +/- 0.061 percent, which was 4.3 times greater than that of the control group (p < 0.0002). Finally, the mean fracture energy of the experimental group was 0.00049 +/- 0.00032 J, which was 15.6 times greater than that of the control group. Failure occurred in all cases at the interface between neocartilage and native cartilage. This study demonstrated that tissue-engineered cartilage produced using a fibrin-based polymer does adhere to adjacent native cartilage and can be used to join two separate pieces of cartilage in the nude mouse model. Cartilage pieces joined in this way can withstand forces significantly greater than those tolerated by cartilage samplesjoined only by fibrin glue.  相似文献   

18.
《Organogenesis》2013,9(2):57-61
Before we can realize our long term goal of engineering lung tissue worthy of clinical applications, advances in the identification and utilization of cell sources, development of standardized procedures for differentiation of cells, production of matrix tailored to meet the needs of the lung and design of methods or techniques of applying the engineered tissues into the injured lung environment will need to occur. Design of better biomaterials with the capacity to guide stem cell behavior and facilitate lung lineage choice as well as seamlessly integrate with living lung tissue will be achieved through advances in the development of decellularized matrices and new understandings related to the influence of extracellular matrix on cell behavior and function. We have strong hopes that recent developments in the engineering of conducting airway from decellularized trachea will lead to similar breakthroughs in the engineering of distal lung components in the future.  相似文献   

19.
Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling.  相似文献   

20.
Atomic force microscopy (AFM) has been proposed as a tool to evaluate the structural and mechanical properties of cartilage tissue. Here, we aimed at assessing whether AFM can be employed to quantify spatially resolved elastic response of tissue engineered cartilage (TEC) to short exposure to IL-1β, thus mimicking the initially inflammatory implantation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号