首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The developmental profile of glycosaminoglycans (GAGs) were examined by cellulose acetate electrophoresis and high performance liquid chromatography in the early chick embryo from late blastula (stage XIII+) to early somite developmental stages (stage HH7-9). Sulphated GAGs were present from the earliest stages. They were more abundant than the non-sulphated forms and showed stage-related changes. Chondroitin sulphate and especially dermatan sulphate appeared to be the predominant GAGs in embryos at stage XIII+. Dermatan sulphate was about three times as abundant as chondroitin sulphate at stage XII+. In contrast, embryos at the definitive streak stage (stage HH4) produced about twice as much chondroitin sulphate as dermatan sulphate. At the head process stage (stage HH5), the level of chondroitin sulphate was reduced and its relative content in the embryo was about the same as dermatan sulphate. Levels of dermatan sulphate were more than five times those of heparan sulphate from stage XIII through to stage HH5 and three times more at stage HH7-9. The 4- and 6- sulphation of chondroitin sulphate increased 14- and 10-fold respectively, from stage XIII+ to stage HH 7-9. The sulphation pattern of chondroitin sulphate had a delta(di)-4S:delta(di)-6S molar ratio ranging from 4 to 8:1 and a delta(di)-4S:delta(di)-OS molar ratio ranging from 9 to 16:1 and was developmentally regulated. Thus, chondroitin sulphate in the early chick embryo was sulphated predominately in the 4-position in all stages studied. The presence of both 4- and 6-sulphated disaccharides in chondroitin sulphate indicated that both 4 and 6 sulfotransferases were active in the early embryo. Hyaluronate and sulphated GAG content increased markedly at gastrulation when the first major cellular migrations and tissue interactions begin.  相似文献   

2.
Interstitial bodies in the early chick embryo   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
In order for the limb to be useful in the evaluation of early determinants of morphogenesis, it is necessary to understand some of the characteristics associated with "limbness" and, more importantly at the beginning at least, it is necessary to know what regions of the early embryo exhibit limbness qualities. Previous investigators have assumed, without direct experimental evidence, that the flank does not have limbness qualities, even at early stages of development. However, there are a few studies suggesting that the early flank does possess limbness qualities. The purpose of the present study was to determine how extensively the qualities of limbness exist in the early chick embryo. Tissues from the future neck, wing, flank, and leg regions were grafted to host celoms and evaluated for their abilities to form limbs. Limbs developed from all four regions of stage 11-14 embryos, but after stage 14 only grafts from the wing and leg regions formed limbs.  相似文献   

6.
Inhibition of DNA replication by aphidicolin in the chick morula interferes with its progression to a normal blastula and prevents induction of the first morphogenetic cell movements of primitive streak formation. Embryos in aphidicolin synthesize some polypeptides typical of blastula but do not display all the characteristic features of morula to blastula transition. Inhibition of DNA replication interferes with the sequential synthesis of maternally coded polypeptides and with the activation of the embryonic genome in the chick embryo.  相似文献   

7.
32P-ortophosphate was introduced intraamnionally into 5, 9, 12, 15 and 19 day-old chick embryos. After 4 hours the specific activity of brain and liver ribosomal proteins and their fractions were determined. It was found that the specific activities of those in both tissues were highest at the early stages of development, and they declined rapidly to reach the lowest value at day 19. The observed differences between brain and liver ribosomal proteins are consistent with an unequal rhythm of ontogenesis.  相似文献   

8.
Summary The myotome of early chick embryos was investigated histochemically by means of the acetylcholinesterase (AChE) reaction.Light-microscopically, at the cervical level, the myotome was first recognized and AChE activity demonstrated at stage 13 (2 day-old embryo). Subsequently, the myotome elongated ventro-laterally along the inner surface of the dermomyotome and reached the ventro-lateral end of the dermomyotome at stage 17 to 18 (3 day-old embryo). AChE activity in the myotome showed subsequent increase in intensity during the course of development. The myotome consisted mainly of AChE-positive cells displaying enzymatic activity along the nuclear membrane and within the cytoplasm. In contrast, almost all cells of the dermomyotome and the interstitial cells were AChE-negative.Electron-microscopically, the myotome cells of the 2 day-old embryo and the cells in the dorso-medial portion of the myotome of the 3 day-old embryo were morphologically undifferentiated; AChE activity was detected in the nuclear envelope and in single short profiles of the endoplasmic reticulum (ER). On the other hand, in the 3 day-old embryo the cells in the ventro-lateral portion of the myotome showed AChE activity in the nuclear envelope, numerous profiles of the ER and some Golgi complexes. These AChE-positive cells were regarded as developing myogenic cells based on their morphological characteristics.The present findings indicate (i) that the appearance of AChE activity in the cytoplasm is the first sign of the differentiation of myogenic cells, and (ii) that in these myogenic cells the increase in AChE activity is based on the development of the ER.  相似文献   

9.
Embryonic epithelia undergo complex deformations (e.g. bending, twisting, folding, and stretching) to form the primitive organs of the early embryo. Tracking fiducial markers on the surfaces of these cellular sheets is a well-established method for estimating morphogenetic quantities such as growth, contraction, and shear. However, not all surface labeling techniques are readily adaptable to conventional imaging modalities and possess different advantages and limitations. Here, we describe two labeling methods and illustrate the utility of each technique. In the first method, hundreds of fluorescent labels are applied simultaneously to the embryo using magnetic iron particles. These labels are then used to quantity 2-D tissue deformations during morphogenesis. In the second method, polystyrene microspheres are used as contrast agents in non-invasive optical coherence tomography (OCT) imaging to track 3-D tissue deformations. These techniques have been successfully implemented in our lab to study the physical mechanisms of early head fold, heart, and brain development, and should be adaptable to a wide range morphogenetic processes.  相似文献   

10.
In vitro whole-embryo culture of chick embryos, originally invented by New, has been widely used for studies of early embryogenesis. Here, a method for electroporation using the New culture and its derivatives is described, to achieve misexpression of exogenous gene in a temporally and spatially controlled manner in gastrulating chick embryos. Detailed information for the devices and procedures, and some experimental examples are presented.  相似文献   

11.
DNA polymerase activities in brain of chick embryo   总被引:2,自引:0,他引:2  
Soriano L 《FEBS letters》1972,22(3):310-314
  相似文献   

12.
13.
Abstract. Entactin is a sulfated glycoprotein of basement membranes and recent data indicate that it may play a major role in extracellular matrix (ECM) assembly and in modulating the activities of the other molecular components. We investigated the time of appearance and subsequent distribution of entactin during the earliest stages of morphogenesis and its involvement in the first major cellular migrations and interactions in the chick embryo. Entactin is first detected in the epiblast and in the hypoblast at the blastula stage. The accumulating ECM displays intense presence of entactin in the space between the epiblast and the hypoblast at late blastula. Entactin is increasingly abundant in the neural plate and in the ECM and also at least transiently in many mesodermal tissues such as the notochord, the developing heart and somites in the early chick embryo. Immuno-gold labeling revealed a punctate pattern of entactin distribution in the ECM during the gastrula, neurula and at later stages and at all levels within the embryo. Because of its early appearance in more than one germ layer, entactin may be important in the formation of most embryonic structures. Entactin is detected at the same developmental time and co-localizes with laminin. Antibodies to entactin do not interfere with triggering of the first major cell movements but perturb directional migration of these cells. It would seem that entactin plays a functional role in the directed migration of cells and does not seem to affect cell adhesion during the period of the first morphogenetic events in the early chick embryo.  相似文献   

14.
Abstract. Entactin is a sulfated glycoprotein of basement membranes and recent data indicate that it may play a major role in extracellular matrix (ECM) assembly and in modulating the activities of the other molecular components. We investigated the time of appearance and subsequent distribution of entactin during the earliest stages of morphogenesis and its involvement in the first major cellular migrations and interactions in the chick embryo. Entactin is first detected in the epiblast and in the hypoblast at the blastula stage. The accumulating ECM displays intense presence of entactin in the space between the epiblast and the hypoblast at late blastula. Entactin is increasingly abundant in the neural plate and in the ECM and also at least transiently in many mesodermal tissues such as the notochord, the developing heart and somites in the early chick embryo. Immunogold labeling revealed a punctate pattern of entactin distribution in the ECM during the gastrula, neurula and at later stages and at all levels within the embryo. Because of its early appearance in more than one germ layer, entactin may be important in the formation of most embryonic structures. Entactin is detected at the same developmental time and co-localizes with laminin. Antibodies to entactin do not interfere with triggering of the first major cell movements but perturb directional migration of these cells. It would seem that entactin plays a functional role in the directed migration of cells and does not seem to affect cell adhesion during the period of the first morphogenetic events in the early chick embryo.  相似文献   

15.
16.
17.
The surfaces of cells from the early embryo of the chick were examined using electron microscope techniques for the visualization of concanavalin A-binding sites. Horseradish peroxidase and Ferritin labelled concanavalin A were used to determine the distribution of the binding sites. All surfaces of the epiblast and hypoblast layers which were accessible to concanavalin A showed the presence of binding sites in stage 1 embryos. The ventral surface of the epiblast showed a high lectin affinity which may reflect the development of a basal lamina on this surface. The individual hypoblast cells at this stage showed a non-uniform distribution of binding sites, having a greater affinity on the dorsal surface than the ventral. By the time of primitive streak formation (stage 4-5) the dorsal surface of the epiblast displayed increased binding sites, while the frequency of sites on the ventral surface of the endoblast was reduced. The latter may reflect a change from one cell population to another, which occurs in the lower layer of the embryo at this time. No consistent correlation could be drawn between changes in motility of cells actually invaginating through the primitive streak and changes in affinity for concanavalin A. An overall increase in affinity of the dorsal surface of the epiblast was revealed by Ferritin and may reflect the changes in surface structure occurring in readiness for the morphogenetic migrations of gastrulation.  相似文献   

18.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   

19.
20.
Summary In early chick blastoderm at stage XIII, the interaction of the hypoblast with the epiblast triggers on the epiblast the first extensive cellular migrations, which result in formation of the primitive streak, the source of the axial mesoderm. During this period, extracellular material (ECM) is secreted and assembled into an organized network in the extracellular spaces and is implicated in regulating the behaviour of the cells that contact it. The first cellular migrations and inductions are inhibited when early chick blastoderm is treated with the glycosylation-perturbing ionophore monensin. The difference in amount and in organization of ECM between monensin-treated embryos and control embryos is striking. Even blastoderms at stage X, which are essentially free of ECM, show extensive ECM after monensin treatment. Monensin produces a substantial change in the polypeptide pattern with the induction or marked accentuation of multiple charged species (isoforms) of polypeptides different from those present in the control embryos. The interference of monensin with the migration and induction mechanisms is permanent in embryos before the primitive streak (PS) stage, and it seems that the respective signals or the sensitivity of the epiblast/hypoblast cells to them must be very stage specific. Monensin-treated embryos probably secrete abnormal ECM that does not provide the proper conditions for the hypoblast to interact with the epiblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号