首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The suggestion that the electron acceptor A1 in plant photosystem I (PSI) is a quinone molecule is tested by comparisons with the bacterial photosystem. The electron spin polarized (ESP) EPR signal due to the oxidized donor and reduced quinone acceptor (P 870 + Q-) in iron-depleted bacterial reaction centers has similar spectral characteristics as the ESP EPR signal in PSI which is believed to be due to P 700 + A 1 - , the oxidized PSI donor and reduced A1. This is also true for better resolved spectra obtained at K-band (24 GHz). These same spectral characteristics can be simulated using a powder spectrum based on the known g-anisotropy of reduced quinones and with the same parameter set for Q- and A1 -. The best resolution of the ESP EPR signal has been obtained for deuterated PSI particles at K-band. Simulation of the A1 - contribution based on g-anisotropy yields the same parameters as for bacterial Q- (except for an overall shift in the anisotropic g-factors, which have previously been determined for Q-). These results provide evidence that A1 is a quinone molecule. The electron spin polarized signal of P700 + is part of the better resolved spectrum from the deuterated PSI particles. The nature of the P700 + ESP is not clear; however, it appears that it does not exhibit the polarization pattern required by mechanisms which have been used so far to explain the ESP in PSI.Abbreviations hf hyperfine - A0 A0 acceptor of photosystem I - A1 A1 acceptor of photosystem I - Brij-58 polyoxyethylene 20 cetyl ether - CP1 photosystem I particles which lack ferridoxin acceptors - ESP electron spin polarized - EPR electron paramagnetic resonance - I intermediary electron acceptor, bacteriopheophytin - LDAO lauryldimethylamine - N-oxide, P700 primary electron donor of photosystem I - PSI photosystem I - P700 T triplet state of primary donor of photosystem I - P870 primary donor in R. sphaeroides reaction center - Q quinore-acceptor in photosynthetic bacteria - RC reaction center  相似文献   

2.
Klughammer C  Klughammer B  Pace R 《Biochemistry》1999,38(12):3726-3732
The photoreduction of the secondary PSI electron acceptor A1 in vivo has recently been detected via X-band EPR spectroscopy in intact spinach chloroplasts and in marine cyanobacteria Synechococcus PCC 7002 [Klughammer, C., and Pace, R. J. (1997) Biochim. Biophys. Acta 1318, 133-144]. A further study of the A1- EPR spectrum of Synechococcus PCC 7002 at room temperature with higher-field resolution revealed partially resolved hyperfine structure which was dominated by 0.4 mT splittings of three equivalent protons. The hyperfine splitting was not significantly affected by incubation of the cyanobacteria in 2H2O medium for 20 h, but was absent in fully deuterated cyanobacteria that were grown in 2H2O medium. Anisotropic g-factors consistent with a phylloquinone radical were derived by spectra simulation. Biosynthetic protonation of quinones via the CH3 donor L-methionine in deuterated cells maintained hyperfine structure in the A1- spectrum, indicating the incorporation of CH3 groups in 60% of the deuterated, photoactive A1 molecules. Conversely, biosynthetic quinone deuteration via L-[methyl-d3]methionine in protonated cells led to the loss of the 0. 4 mT splittings in 54% of the A1 molecules. These observations confirm the conclusion of Heathcote et al. [(1996) Biochemistry 35, 6644-6650] of the identity of EPR-detected, photoreduced A1- in vivo with a phylloquinone (vitamin K1) radical in PSI. The partially resolved hyperfine structure of the A1- spectrum indicates an altered spin distribution in the bound vitamin K1- radical in vivo compared to that of unbound vitamin K1- in vitro.  相似文献   

3.
Room temperature transient EPR spectra of photosystem I (PS I) particles from Synechocystis 6803 are presented. Native PS I samples and preparations depleted in the A1-acceptor site by solvent extraction and then reconstituted with the quinones (Q) vitamin K1 (VK1), duroquinone (DQ and DQd12) and naphthoquinone (NQ) have been studied. Sequential electron transfer to P700+A1- (FeS) and P700+A1 (FeS)- is recovered only with VK1. With DQ and NQ electron transfer is restored to form the radical pair P700+Q- as specified by a characteristic electron spin polarization (ESP)-pattern, but further electron transfer is either slowed down or blocked. A qualitative analysis of the K-band spectrum suggests that the orientation of reconstituted NQ in PS I is different from the native acceptor A1 = VK1.  相似文献   

4.
Miyamoto R  Mino H  Kondo T  Itoh S  Oh-Oka H 《Biochemistry》2008,47(15):4386-4393
The function of menaquinone as electron acceptor A 1 was identified by EPR in the purified type 1 homodimeric reaction center core complex (RC core) of an anoxygenic photosynthetic bacterium, Heliobacterium modesticaldum. After illumination of the RC core at 210 K in the absence and presence of dithionite, we detected the radical of a special pair of bacteriochlorophyll g molecules (P800 (+)) at g = 2.0033 and a quinone-type radical at g = 2.0062, respectively, at 14 K. Flash excitation of the dark-frozen RC core at 14 K induced two types of transient EPR signals, i.e., the P800 (+) radical that decayed with a time constant of 3.7 ms and a much faster decay component that showed the electron spin polarization (ESP) pattern of E/A (E, emission; A, absorption). The latter one was assigned to the P800 (+)F X (-) radical pair state. A new ESP signal that had an apparent A/E/A/E pattern extended to the lower-magnetic-field side was transiently induced by the flash excitation in the RC core that was preilluminated at 210 K in the presence of ascorbate and subsequently cooled to 14 K in the light. The 210 K preillumination of the RC core in the presence of dithionite led to accumulation of the dark stable semiquinone-type signal at g = 2.0062 and increased the intensity of the light-induced P800 triplet signal. Flash excitation at 14 K induced the smaller A/E/A/E-type signal that had the greater contribution of the lower-magnetic-field envelope. This ESP signal could thus be ascribed to the P800 (+)A 1 (-) radical pair. The kinetics and spectral shape of this ESP signal suggest that menaquinone serves as secondary electron acceptor A 1 with the molecular orientation of its ring being somewhat different from that of phylloquinone in photosystem I.  相似文献   

5.
Illumination of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 at 200 K in the presence of ascorbate leads to the formation of two ascorbyl radicals per PSI, which are formed by P700(+) reduction by ascorbate. During photoaccumulation, one half of the ascorbyl radicals is formed with a halftime of 1 min and the other half with a halftime of 7 min. Pulsed electron paramagnetic resonance (EPR) experiments with protonated/deuterated PSI show that a PSI proton/deuteron is strongly coupled to the ascorbyl radical. Our data indicate that reactive ascorbate molecules bind to PSI at two specific locations, which might be symmetrically located with respect to the pseudo-C(2) axis of symmetry of the heterodimeric core of PSI. Reduction of P700(+) by ascorbate leads to multiple turnover of PSI photochemistry, resulting in partial photoaccumulation of the doubly reduced species (F(A)(-), F(B)(-)). A modified form of F(B)(-)-in accordance with Chamorovsky and Cammack [Biochim. Biophys. Acta 679 (1982) 146-155], but not of F(A)(-), is observed by EPR after illumination at 200 K, which indicates that reduction of F(B) at 200 K is followed by some relaxation process, in line with this cluster being the most exposed to the solvent.  相似文献   

6.
Kinetics of the redox reactions in the reaction center (P700) of photosystem I (PSI) of the cyanobacterium Synechocystis sp. PCC 6803 have been studied by EPR spectroscopy. The redox kinetics were recorded based on accumulation of the EPRI signal when the final signal was the sum of individual signals produced in response to illumination of the cells. After prolonged (more than 3 sec) dark intervals between illuminations, the kinetic curve of the EPR signal from P700+ was multiphasic. After a sharp increase in the signal amplitude at the beginning of illumination (phase I), the amplitude rapidly (for 0.1-0.2 sec) decreased (phase II). Then the signal amplitude gradually increased (phase III) until the steady rate of electron transfer was established. With short-term (1 sec) dark intervals between the flashes and also in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the kinetics of the light-induced increase in the EPR signal from P700+ were monophasic. Inhibition with iodoacetamide of electron transport on the acceptor side of PSI under anaerobic conditions or an increase in the amount of respiration substrates on addition of glucose into a suspension of DCMU-treated wild-type cells increased the level of P700 reduction in phase III. The findings suggest that the kinetic curve of the EPR signal from P700+ is determined by both the electron entrance onto P700+ on the donor side of PSI and activity of electron acceptors of PSI.  相似文献   

7.
Utschig LM  Tiede DM  Poluektov OG 《Biochemistry》2010,49(45):9682-9684
Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction.  相似文献   

8.
J Biggins  P Mathis 《Biochemistry》1988,27(5):1494-1500
The function of vitamin K1 in the primary electron-transfer processes of photosystem I (PS I) was investigated in the cyanobacterium Synechocystis 6803. A preparation of purified PS I was found to contain two vitamin K1's per reaction center. One vitamin K1 was removed by extraction with hexane, and further extraction using hexane including 0.3% methanol resulted in a preparation devoid of vitamin K1. The hexane-extracted PS I was functional in the photoreduction of NADP+, but the PS I after extraction using hexane-methanol was totally inactive. Activity was restored by using exogenous vitamin K1 plus the hexane extract. Vitamin K3 would not substitute. The room temperature recombination kinetics of the PS I extracted with hexane were not significantly modified. However, following the removal of both vitamin K1's, the 20-ms recombination between P-700+ and P-430- was replaced by a dominant relaxation (t 1/2 = 30 ns) due to recombination of the primary biradical P-700+ A0- and a slower component originating from the P-700 triplet. This kinetic behavior was consistent with an interruption of forward electron transfer to the acceptor A1. Addition of either vitamin K1 or vitamin K3 to such preparations resulted in restoration of the slow kinetic phase (greater than 2 ms), indicating significant competition by the two exogenous quinones for electron transfer from A0-. In the case of vitamin K3, this change in the kinetics induced by vitamin K1, suggesting successful reconstitution of the acceptor site A1. These data support the hypothesis that acceptor A1 is vitamin K1 and is a component of the electron-transfer pathway for NADP+ reduction.  相似文献   

9.
Electron transfer in photosystem II at cryogenic temperatures   总被引:4,自引:0,他引:4  
The photochemistry in photosystem II of spinach has been characterized by electron paramagnetic resonance (EPR) spectroscopy in the temperature range of 77-235 K, and the yields of the photooxidized species have been determined by integration of their EPR signals. In samples treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a single stable charge separation occurred throughout the temperature range studied as reflected by the constant yield of the Fe(II)-QA-EPR signal. Three distinct electron donation pathways were observed, however. Below 100 K, one molecule of cytochrome b559 was photooxidized per reaction center. Between 100 and 200 K, cytochrome b559 and the S1 state competed for electron donation to P680+. Photooxidation of the S1 state occurred via two intermediates: the g = 4.1 EPR signal species first reported by Casey and Sauer [Casey, J. L., & Sauer, K. (1984) Biochim. Biophys. Acta 767, 21-28] was photooxidized between 100 and 160 K, and upon being warmed to 200 K in the dark, this EPR signal yielded the multiline EPR signal associated with the S2-state. Only the S1 state donated electrons to P680+ at 200 K or above, giving rise to the light-induced S2-state multiline EPR signal. These results demonstrate that the maximum S2-state multiline EPR signal accounts for 100% of the reaction center concentration. In samples where electron donation from cytochrome b559 was prevented by chemical oxidation, illumination at 77 K produced a radical, probably a chlorophyll cation, which accounted for 95% of the reaction center concentration. This electron donor competed with the S1 state for electron donation to P680+ below 100 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Nugent JH  Muhiuddin IP  Evans MC 《Biochemistry》2003,42(18):5500-5507
Previous work in many laboratories has established that hydroxylamine reduces the S(1) state of the water oxidizing complex (WOC) in one-electron steps. Significant levels of what can now be defined as the S(-1)* state are achieved by specific (concentration and incubation length) hydroxylamine treatments. This state has already been studied by electron paramagnetic resonance spectrometry (EPR), and unusual EPR signals were noted (for example, see Sivaraja, M., and Dismukes, G. C. (1988) Biochemistry 27, 3467-3475). We have now reinvestigated these initial experiments and confirmed many of the original observations. We then utilized more recent EPR markers for the S(0) and S(1) states to further explore the S(-1)* state. The broad radical "split" type EPR signal, produced by 200 K illumination of samples prepared to give a high yield of the S(-1)* state, is shown to most likely reflect a trapped intermediate state between S(-1)* and S(0)*, since samples where this signal is present can be warmed in the dark to produce S(0)*. The threshold for advancement from S(-1)* to S(0)* is near 200 K, as the yield of broad radical decreases and S(0)* multiline EPR signal increases with length of 200 K illumination. Advancement of S(0)* to S(1) is limited at 200 K, but S(1) can be restored by 273 K illumination. Illumination of these hydroxylamine-treated samples at temperatures below 77 K gives a second broad radical EPR signal. The line shape, decay, and other properties of this new radical signal suggest that it may arise from an interaction in the S(-2)* or lower S states, which are probably present in low yield in these samples. Illumination below 20 K of S(0)* state samples containing methanol, and therefore exhibiting the S(0) multiline signal, gives rise to a third broad radical with distinctive line shape. The characteristics of the three broad radicals are similar to those found from interactions between Y(Z)(*) and other S states. The evidence is presented that they do represent intermediate states in S state turnover. Further work is now needed to identify these radicals.  相似文献   

11.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

12.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

13.
J Biggins 《Biochemistry》1990,29(31):7259-7264
Selected substituted 1,4-benzoquinones, 1,4-naphthoquinones, and 9,10-anthraquinones were investigated as possible replacement quinones in spinach photosystem I (PSI) preparations that had been depleted of endogenous phylloquinone by extraction with hexane/methanol. As a criterion for successful biochemical reconstitution, the restoration of electron transfer was determined by measuring P-430 turnover at room temperature from flash-induced absorbance transients. Restoration of complete electron transfer between A0- and P-430 (terminal iron-sulfur centers, FAFB) was demonstrated by using phylloquinone, 2-methyl-3-decyl-1,4-naphthoquinone, 2-methyl-3-(isoprenyl)2-1,4-naphthoquinone, and 2-methyl-3-(isoprenyl)4-1,4-naphthoquinone. All other quinones tested did not restore P-430 turnover but acted as electron acceptors and oxidized A0-. It is concluded that the specificity of the replacement quinone for interaction with the primary acceptor, A0-, is low but additional structural constraints are required for the quinone occupying the A1 site to donate to the iron-sulfur center, Fx. It is suggested that the 3-phytyl side chain of phylloquinone and the 3-alkyl tails of the three naphthoquinones that restored P-430 turnover may be required for interaction with a hydrophobic domain of the A1 site in the PSI core to promote electron transfer to Fx and then to FAFB.  相似文献   

14.
The appearance of ESR signals from Photosystem I (PS I) electron acceptors A1 and A0 in water or deuterium oxide suspension was followed using a low-temperature photoaccumulation technique. In deuterated samples the A1 signal was narrowed by a factor of 0.66 compared with the control. This effect was fully reversible upon resuspension of treated samples in H2O. The narrow ESR signal from deuterated A1 had similar power saturation characteristics to the normal signal; however, a signal from a second component resolved by deuteration was saturated at higher microwave powers than the control. The power saturation behaviour of A1 in un-modified reaction centres indicated that it is an anionic semiquinone in a ‘protic’ environment. Deuteration reversibly modified the relative extents of reduction of iron sulphur electron acceptors A and B such that centre B became the more stable electron acceptor. The g-value and line-width of iron sulphur centre X was not modified by deuteration although it appeared to become more efficiently reduced. These results are discussed in the light of current evidence from optical, electron spin polarisation and extraction experiments that suggest that A1 is a quinone, probably vitamin K-1.  相似文献   

15.
Simulations were done of the electron paramagnetic resonance (EPR) spectra for bis(N,N-dimethyl-L-alpha-isoleucinato)copper(II) dissolved in deuterated methanol as a function of temperature. They indicated different behaviour of the complex below and above 300 degrees K. The effect was examined by the conformational analysis of the copper(II) complex with a new molecular mechanics force field.  相似文献   

16.
We have used pulsed electron paramagnetic resonance (EPR) measurements of the electron spin polarised (ESP) signals arising from the geminate radical pair P700(z.rad;+)/A(1)(z.rad;-) to detect electron transfer on both the PsaA and PsaB branches of redox cofactors in the photosystem I (PSI) reaction centre of Chlamydomonas reinhardtii. We have also used electron nuclear double resonance (ENDOR) spectroscopy to monitor the electronic structure of the bound phyllosemiquinones on both the PsaA and PsaB polypeptides. Both these spectroscopic assays have been used to analyse the effects of site-directed mutations to the axial ligands of the primary chlorophyll electron acceptor(s) A(0) and the conserved tryptophan in the PsaB phylloquinone (A(1)) binding pocket. Substitution of histidine for the axial ligand methionine on the PsaA branch (PsaA-M684H) blocks electron transfer to the PsaA-branch phylloquinone, and blocks photoaccumulation of the PsaA-branch phyllosemiquinone. However, this does not prevent photoautotrophic growth, indicating that electron transfer via the PsaB branch must take place and is alone sufficient to support growth. The corresponding substitution on the PsaB branch (PsaB-M664H) blocks kinetic electron transfer to the PsaB phylloquinone at 100 K, but does not block the photoaccumulation of the phyllosemiquinone. This transformant is unable to grow photoautotrophically although PsaA-branch electron transfer to and from the phyllosemiquinone is functional, indicating that the B branch of electron transfer may be essential for photoautotrophic growth. Mutation of the conserved tryptophan PsaB-W673 to leucine affects the electronic structure of the PsaB phyllosemiquinone, and also prevents photoautotrophic growth.  相似文献   

17.
M Sivaraja  J Tso  G C Dismukes 《Biochemistry》1989,28(24):9459-9464
EPR studies have revealed that removal of calcium using citric acid from the site in spinach photosystem II which is coupled to the photosynthetic O2-evolving process produces a structural change in the manganese cluster responsible for water oxidation. If done in the dark, this yields a modified S1' oxidation state which can be photooxidized above 250 K to form a structurally altered S2' state, as seen by formation of a "modified" multiline EPR signal. Compared to the "normal" S2 state, this new S2'-state EPR signal has more lines (at least 25) and 25% narrower 55Mn hyperfine splittings, indicative of disruption of the ligands to manganese. The calcium-depleted S2' oxidation state is greatly stabilized compared to the native S2 oxidation state, as seen by a large increase in the lifetime of the S2' EPR signal. Calcium reconstitution results in the reduction of the oxidized tyrosine residue 161YD+ (Em approximately 0.7-0.8 V, NHE) within the reaction center D1 protein in both the S1' and S2' states, as monitored by its EPR signal intensity. We attribute this to reduction by Mn. Thus a possible structural role which calcium plays is to bring YD+ into redox equilibrium with the Mn cluster. Photooxidation of S2' above 250 K produces a higher S state (S3 or S4) having a new EPR signal at g = 2.004 +/- 0.003 and a symmetric line width of 163 +/- 3 G, suggestive of oxidation of an organic donor, possibly an amino acid, in magnetic contact with the Mn cluster. This EPR signal forms in a stoichiometry of 1-2 relative to YD+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Wu W  Booker S  Lieder KW  Bandarian V  Reed GH  Frey PA 《Biochemistry》2000,39(31):9561-9570
An analogue of lysine, trans-4,5-dehydro-L-lysine (trans-4, 5-dehydrolysine), is a potent inhibitor of lysine 2,3-aminomutase from Clostridium subterminale SB4 that competes with L-lysine for binding to the active site. Inclusion of trans-4,5-dehydrolysine with activated enzyme and the coenzymes pyridoxal-5'-phosphate and S-adenosylmethionine, followed by freezing at 77 K, produces an intense signal in the electron paramagnetic resonance (EPR) spectrum at g 2.0, which is characteristic of an organic radical. A series of deuterated and (15)N-labeled samples of trans-4,5-dehydrolysine were synthesized and used to generate the EPR signal. Substitution of deuterium for hydrogen at C2, C3, C4, C5, and C6 of trans-4, 5-dehydrolysine led to significant simplifications and narrowing of the EPR signal, showing that the unpaired electron was located on the carbon skeleton of 4,5-trans-4,5-dehydrolysine. The hyperfine splitting pattern is simplified by use of 4,5-dehydro[3, 3-(2)H(2)]lysine or 4,5-dehydro[4,5-(2)H(2)]lysine, and it is dramatically simplified with 4,5-dehydro-[3,3,4,5,6,6-(2)H(6)]lysine. Spectral simulations show that the EPR signal arises from the allylic radical resulting from the abstraction of a hydrogen atom from C3 of trans-4,5-dehydrolysine. This radical is an allylic analogue of the substrate-related radical in the rearrangement mechanism postulated for this enzyme. The rate constant for formation of the 4,5-dehydrolysyl radical (2 min(-)(1)) matches that for the decrease in the concentration of [4Fe-4S](+), showing that the two processes are coupled. The cleavage of S-adenosylmethionine to 5'-deoxyadenosine and methionine takes place with a rate constant of approximately 5 min(-)(1). These kinetic correlations support the hypothesis that radical formation results from a reversible reaction between [4Fe-4S](+) and S-adenosylmethionine at the active site to form [4Fe-4S](2+), the 5'-deoxyadenosyl radical, and methionine as intermediates.  相似文献   

19.
Mixed-valent species were generated in the diiron site of active (with tyrosyl free radical) and met (without radical) forms of protein R2-2 in a class Ib ribonucleotide reductase from Mycobacterium tuberculosis by low temperature reduction (γ-irradiation) at 77 K. The primary mixed-valent EPR signal is a mixture of two components with axial symmetry and gav<2.0, observable at temperatures up to 77 K, and assigned to antiferromagnetically coupled high spin ferric/ferrous sites. The two components in the primary EPR signal can be explained by the existence of two structurally distinct μ-oxo-bridged diferric centers, possibly related to structural heterogeneity around the iron site, and/or different properties of the two polypeptide chains in the homodimeric protein after the radical reconstitution reaction. Annealing of the irradiated R2-2 samples to 143 K transforms the primary EPR signal into a rhombic spectrum characterized by gav<1.8 and observable only below 25 K. This spectrum is assigned to a partially relaxed form with a μ-hydroxo-bridge. Further annealing at 228 K produces a new complex rhombic EPR spectrum composed of at least two components. An identical EPR spectrum was observed and found to be stable upon chemical reduction of Mycobacterium tuberculosis RNR R2-2 at 293 K by dithionite.  相似文献   

20.
An electron paramagnetic resonance (EPR) signal near g=6 in Photosystem II (PSII) membranes has been assigned to a high spin form of cytochrome (Cyt) b(559) (R. Fiege, U. Schreiber, G. Renger, W. Lubitz, V.A. Shuvalov, FEBS Lett. 377 (1995) 325-329). Here we have further investigated the origin of this signal. A slow formation of the signal during storage in the dark is observed in oxygen-evolving PSII membranes, which correlate with the oxidation of Fe(2+) by plastosemiquinone or oxygen. Removal of oxygen inhibits formation of the high spin iron signal. The g=6 EPR signal is photoreduced at cryogenic temperatures and is restored slowly by subsequent dark storage at 77 K. The amplitude of the photoreduced signal increases as the pH is lowered, which shows that the origin is not the hydroxyl ligated Cyt b(559) species proposed previously. Different cryoprotectants also influence the amplitude and lineshape of the high spin iron signal in a manner suggesting that smaller cryoprotectants can penetrate the iron environment. A correlation between the high spin iron and g=1.6 EPR signal assigned to an interaction involving the semiquinones of Qa and Qb is shown. It is concluded that the appearance of the high spin iron signal in oxygen-evolving PSII membranes involves reduced PSII electron acceptors and oxygen and suggests that the signal is from the non-haem iron of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号