首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
The omitted stimulus potential (OSP) is a type of event-related potentials elicited by cognitively-relevant stimuli associated with mental processes in humans. Crayfish also emit OSP when an expected stimulus does not arrive, although this is not considered to index a high-level cognitive event, but it is endogenous in nature because this depends on the recent history and arousal state of the animal. Although OSP is highly conserved in evolution, it had not been the subject of circadian study. Our hypothesis is that OSP, recorded in crayfish brain (Procambarus clarkii) has a circadian behaviour in its firing pattern. OSPs show circadian rhythms in both the latency and in the OSP/Sp ratio, under free-running (light:light, LL) and photoperiod (light:dark, LD) conditions, with main peaks during the daytime. This is the first report that shows a circadian pattern of OSP.  相似文献   

2.
Extracellular spikes were recorded from cell bodies of sympathetic preganglionic neurones in spinal segments T1-T3 of the cat. Each neurone was identified by its antidromic response to electrical stimulation of the sympathetic chain and was found in histological sections to lie within the intermediolateral nucleus. Physiological properties studied in detail included basal activity, spike configuration, and latency of antidromic activation. Also studied, in tests with paired stimuli, were the threshold interstimulus interval evoking two responses, as well as changes in amplitude and latency of the second spike which occurred at intervals near this threshold. Approximately 60% of the units studied were spontaneously active, the rest were silent. Spontaneous activity was characterized by a slow (mean = 3.1 +/- 2.6 (SD) spikes/s), irregular pattern of discharge. With approximately one-third of the cases there was a periodic pattern of discharge in phase with oscillations in blood pressure. This correlation of phasic activity suggests that many of the units studied were involved specifically in cardiovascular function. Silent and spontaneously active units could not be differentiated on the basis of latency of antidromic activation or threshold interstimulus interval; mean latency for the two groups was 7.2 +/- 4.9 ms, mean threshold interval was 6.4 +/- 4.7 ms. Thus, with the exception of basal activity, the physiological properties studied failed to indicate more than a single population of neurones. These results therefore suggest that the sympathetic preganglionic neurones in the intermediolateral nucleus subserving varied autonomic functions share overlapping physiological properties, and that functional differentiation of these neurones may be based on differences in synaptic inputs.  相似文献   

3.
Summary Up to five microelectrodes inserted through short hypodermic needles in the cranial cartilage of Sepia officinalis recorded potentials while the cuttlefish moved freely in a small enclosure. Compound field potentials and unit spikes were seen during ongoing, spontaneous activity and after sensory stimulation.Ongoing activity resembles that reported for octopus, with maximum power usually below 20 Hz. Amplitude varies greatly but has not been seen to shut off or turn on abruptly and globally as in octopus.Evoked potentials, focally large after flashes of light consist of several waves; the first is largest, positive and peaks at ca. 35 ms (called P35), followed by ca. P75, P95, N110 and smaller waves or oscillations lasting more than 0.5 s. The Upper Following Frequency (highest flashing rate the potentials can follow 1:1), without averaging, is >15 flashes/s (20–22 °C); at 20/s the 11 following lasts for 1 or 2 s. The Lower Fusion Frequency of averaged responses is < 30/s. Gentle tapping of the tank wall evokes local, brief, fast potentials. No responses have been found to loud air-borne clicks and tone bursts with principal energy at 300 Hz or to electric fields in the bath at 50–100 V/cm.In a few loci relatively large slow Omitted Stimulus Potentials have been seen following the end of a train of flashes at more than 5/s; these are by definition event related potentials and a special, central form of OFF response.Abbreviations EP evoked potential - ISI interstimulus interval - OSP omitted stimulus potential - VEP visual evoked potential  相似文献   

4.
Rucci M  Beck J 《Spatial Vision》2005,18(2):259-273
The identification accuracy of briefly flashed stimuli followed by an interstimulus interval (ISI) of variable length was compared to that obtained with longer flashes that prolonged the exposure of the stimulus throughout the ISI. The interval between the onset of the stimulus and the onset of the mask (stimulus onset asynchrony (SOA)) was the same in the two conditions. Consistent with a dependence of visual identification on SOA, the percentages of correct identification in the two conditions were approximately similar at all SOAs irrespective of the level of noise, stimulus familiarity, and stimulus complexity. However, departures from the onset-onset rule were also present. While the two conditions yielded virtually identical identification accuracy with an SOA of 80 ms, small but significant differences were found for shorter and longer intervals. Possible theoretical explanations of the results are presented.  相似文献   

5.
1. Changes in EEG power spectrum of carp to a priming non-acoustic stimulus followed by acoustic clicks were compared to those due to acoustic clicks delivered alone. Recordings were made from the telencephalon, midbrain and medulla. Acoustic evoked potentials (AEPs) to the clicks were also recorded. 2. EEG power changes to non-acoustic stimuli occurred over the whole 1-40 Hz frequency range and were regionally specific and consistent. 3. The changes in the EEG midfrequency 12-24 Hz power spectrum to non-acoustic stimuli were significantly correlated with changes in the AEP to subsequent clicks. An elevated medullary AEP amplitude and reduced duration were correlated with increased medullary EEG power and increased midbrain AEP duration. 4. Telencephalic EEG power changes were inversely related to changes in medullary and midbrain AEP amplitude.  相似文献   

6.
To determine the level at which certain response characteristics originate, we compared monaural auditory responses of neurons in ventral cochlear nucleus, nuclei of lateral lemniscus and inferior colliculus. Characteristics examined were sharpness of frequency tuning, latency variability for individual neurons and range of latencies across neurons.Exceptionally broad tuning curves were found in the nuclei of the lateral lemniscus, while exceptionally narrow tuning curves were found in the inferior colliculus. Neither specialized tuning characteristic was found in the ventral cochlear nuclei.All neurons in the columnar division of the ventral nucleus of the lateral lemniscus maintained low variability of latency over a broad range of stimulus conditions. Some neurons in the cochlear nucleus (12%) and some in the inferior colliculus (15%) had low variability in latency but only at best frequency.Range of latencies across neurons was small in the ventral cochlear nucleus (1.3–5.7 ms), intermediate in the nuclei of the lateral lemniscus (1.7–19.8 ms) and greatest in the inferior colliculus (2.9–42.0 ms).We conclude that, in the nuclei of the lateral lemniscus and in the inferior colliculus, unique tuning and timing properties are built up from ascending inputs.Abbreviations AVCN anteroventral cochlear nucleus - BF best frequency - CV coefficient of variation - DCN dorsal cochlear nucleus - FM frequency modulation - IC inferior colliculus - NLL nuclei of lateral lemniscus - PSTH post stimulus time histogram - PVCN posteroventral cochlear nucleus - SD standard deviation - SPL sound pressure level - VCN ventral cochlear nuclei - VNLLc ventral nucleus of the lateral lemniscus, columnar division  相似文献   

7.
To characterize synchronisation strategies in the tracking of auditory rhythm with rhythmic finger tapping, the adaptation process after unexpected step changes of an interstimulus interval (ISI) of 500 ms was investigated. Step changes of 2% (10 ms), 4% (20 ms), and 10% (50 ms) of ISI were applied to the stimulus sequence. Synchronisation patterns of 5 subjects were analyzed based on synchronisation error (SE) and interresponse intervals (IRI). A strategy shift contigent upon the size of the introduced step change was detected. After small ISI changes, rapid IRI matching to the new ISI was accompanied by temporarily enlarged SE values, which slowly returned to preferred SE values before the step change. Large ISI changes showed quick SE adaptations accompanied by a temporary overcorrection of IRI. Response asymmetry between ISI decreases and increases emerged, showing a stronger adaptation during ISI increases. A two-dimensional difference equation was formulated to simulate the time series of intertap intervals and explain the control process during IRI and SE adjustments. The system constants were optimized to minimalize the deviations between the computed and the observed response trajectories, consisting of the time series of SE and IRI. It was shown that a successful model fit using a linear two-dimensional difference equation was based on the size and direction of the ISI changes. MANOVA procedures showed that differences in equation parameters during small and large step changes were statistically significant (P<0.05). It is therefore suggested that a uniform model accounting for synchronization responses to all step changes would require the introduction of nonlinear system properties. Received: 20 August 1997/Accepted in revised form: 9 June 1998  相似文献   

8.
The time course of poststimulatory adaptation of the inferior colliculus central nucleus (ICC) of CBB6F1 hybrid mice to sound sequences, specifically, series of four tonal stimuli presented at intervals of 0, 2, 4, 10, 20, 50, 100, 200, 500, 700, 1000, and 1500 ms were studied. Assessment of the adaptation of the entire neuronal population have shown that, at an interstimulus interval of 0–200 ms, the response to the first tone in a series is significantly stronger than those to the second to fourth tones, the strengths of the latter three responses not differing significantly from one another. If the interstimulus interval is 500 ms or longer, the response to none of the tones in a series differs significantly in strength from the others. The role of adaptation of midbrain neurons to the grouping of components of bioacoustic stimuli is discussed.  相似文献   

9.
Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains dense anatomical interconnections with the cortical motor system. When a startling AS is delivered, prior to transcranial magnetic stimulation (TMS), the AS produces a suppression of motor evoked potential (MEP) amplitude in hand and arm muscles of healthy subjects. Here we analyzed the conditioning effect of a startling AS on MEP amplitude evoked by TMS to the primary motor leg area. Ten healthy volunteers participated in two experiments that used a conditioning-test paradigm. In the first experiment, a startling AS preceded a suprathreshold transcranial test stimulus. The interstimulus interval (ISI) varied between 20 to 160 ms. When given alone, the test stimulus evoked a MEP amplitude of approximately 0.5 mV in the slightly preinervated soleus muscle (SOL). In the second experiment, the startling AS was used to condition the size of the H-reflex in SOL muscle. Mean MEP amplitude was calculated for each ISI. The conditioning AS suppressed MEP amplitude at ISIs of 30-80 ms. By contrast, H-reflex amplitude was augmented at ISIs of 100-200 ms. In conclusions, acoustic stimulation exerts opposite and ISI-specific effects on the amplitude of MEPs and H-reflex in the SOL muscle, indicating different mechanism of auditory-to-motor interactions at cortical and spinal level of motor system.  相似文献   

10.
In vertebrates, and in humans in particular, so-called omitted stimulus potentials can be electrically recorded from the brain or scalp upon repeated stimulation with simple stimuli such as light flashes.While standard evoked potentials follow each stimulus in a series, omitted stimulus potentials occur when an additional stimulus is expected after the end of a stimulus series. These potentials represent neuronal plasticity and are assumed to be involved in basic cognitive processes.We recorded electroretinograms from the eyes and visually evoked potentials from central brain areas of honey bees and ants, social insects to which cognitive abilities have been ascribed and whose rich-behavioral repertoires include navigation, learning and memory.We demonstrate that omitted stimulus potentials occur in these insects. Omitted stimulus potentials in bees and ants show similar temporal characteristics to those found in crayfish and vertebrates, suggesting that common mechanisms may underlie this form of short-term neuronal plasticity.  相似文献   

11.
Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.  相似文献   

12.
The central nervous system first processes taste informationin the solitary nucleus, which has been almost exclusively studiedin terms of average firing rate. We analyzed interspike intervals(ISI's) of 25 taste-responsive single units in the hamster (Mesocricetusauratus) solitary nucleus. ISI's were measured during spontaneousactivity and during stimulation with NaCl, KCl, sucrose, ora mixture of the three, and graphed on semi-logarithmic plots.Two different ISI patterns were evident: simple (13 units) andcomplex (12 units). Simple ISI patterns had a single broad peakat 284.7 ± 70.4 ms spontaneous and 78.8 ± 12.8ms stimulated. All complex ISI patterns had one distinct, sharppeak for an interval about 10 ms (11.3 ± 0.4 ms: spontaneous,9.3 ± 0.5 ms: stimulated), and a second, broader peakat 273.9 ± 45.9 ms spontaneous and 71.5 ± 14.6ms stimulated. As rate of firing increased peaks in ISI patternspredictably moved towards lower intervals, but ISI pattern-typedid not change. This constancy of ISI pattern held for responsesof a unit across all stimuli and did not depend upon the stimulusspecificity or location of the unit within the rostral poleof the solitary nucleus. Apparently, the pattern that a tasteneuron generates is intrinsic to the neuron and may relate tothe way it processes tast information.  相似文献   

13.
Summary The study focussed on the representation of the electrosensory and lateral line units in the midbrain of the axolotl Ambystoma mexicanum. In addition, the responses to photic and acoustic/vibrational stimuli were determined. Unit properties were characterized with respect to baseline activity, sensitivity, latency, directional specificity and number of input modalities. The anatomical arrangement of the units was determined using stereotactic and histological measurements of the electrode positions.Of 106 units recorded, 29 units were unimodal, 77 units responded to more than one modality. Most units discharged only in response to stimuli. Thresholds of electrosensory units were about 100 V/cm field strength; lateral line units had thresholds below 5 m pp amplitude. The shortest latencies (8–17 ms) were found for responses to visual stimuli. Lateral line and vestibular units responded after 35–58 ms, electroreceptive units after 79–150 ms. All electrosensory and about 50% of the lateral line units were sharply tuned to definite stimulus directions.Electrosensory and lateral line units formed topographical maps in the tectum. The map in each tectal hemisphere contained information about the contralateral surroundings. The electrosensory, lateral line and visual representations were only partly in register; especially in the caudal areas of the midbrain the alignment was poor.  相似文献   

14.
Rats reduce intake of a palatable saccharin solution when it is followed by access to a preferred sucrose solution. This phenomenon, referred to as an anticipatory contrast effect (ACE), is thought to occur because the value of the saccharin conditioned stimulus pales in comparison to the highly rewarding sucrose unconditioned stimulus expected in the near future. Although relatively little is known about the underlying neural substrates, lesions of the gustatory thalamus fully disrupt the phenomenon (Reilly S, Bornovalova M, and Trifunovic R. Behav Neurosci 118: 365-376, 2004; Reilly S and Pritchard TC. Behav Neurosci 110: 746-759, 1996). The present set of experiments revisited this issue to determine the nature of this deficit. Rats with bilateral ibotenic acid lesions of the gustatory thalamus were given 3-min access to 0.15% saccharin and, after a 0-s or 5-min interval, were given 3-min access to either the same saccharin solution or a highly preferred 1.0 M sucrose solution. In experiment 1, ACE testing began with the 5-min interstimulus interval (ISI) and then switched to the 0-s ISI. For experiment 2, the order of ISI testing was reversed. The results show that axon-sparing, neurotoxic lesions of the gustatory thalamus prevent ACEs with a 0-s ISI and lead to a reversal (i.e., a reinforcement effect) with a 5-min ISI. Together, the results suggest that the lesion leads to a specific reward comparison deficit, whereby the rats fail to compare the value of an available reward with the memory of a preferred reward that is anticipated in the near future.  相似文献   

15.
The latent periods (LP) of normal saccades and antisaccades were studied in 10 right-handed healthy subjects in two series of experiments. Peripheral visual stimuli were located at an angle of 10 degrees with respect to the central fixation stimulus in the left and right visual semifields. Two standard schemes of visual stimulation: 1) SS (single step), i.e., switching the peripheral stimulus on immediately after switching the central stimulus of; 2) GAP, i.e., the same with the interstimulus interval in 200 ms. It was shown that in the GAP stimulation condition, the LP of both saccades and antisaccades was 30-50 shorter than in the SS condition. The LP of antisaccades was longer than that of saccades by 145-300 ms. The LP of the leftward antisaccades was by 10-100 ms shorter than that of the rightward ones. Probably, this phenomenon reflects the dominance of the right hemisphere in spatial attention.  相似文献   

16.
Measurements of the thoracic temperature and recordings of the spike activity of the most sensitive auditory receptor (A1 cell) were made in Empyreuma pugione (Arctiidae, Ctenuchinae). The temperature range tested (19–36 °C) is relevant for the behavior and ecology of this species. Experiments were performed during the hours of maximal flying activity in the wild: sunrise and sunset. The thoracic temperature during rest reflects that of the surrounding air; there is an increase of 3–4 °C immediately after ceasing free flying in the laboratory. The spike activity of the tympanic organ was recorded with a stainless-steelhook electrode placed beneath the tympanic nerve in the mesothorax. The A1 cell activity was studied without acoustic stimulation (spontaneous) and in response to 35-kHz acoustic pulses of 20, 40, or 100 ms duration. At all of these durations A1 cell response to saturating stimulus was analysed, while with 40-ms pulses different stimulus intensities were used (20–90 dB SPL in 10-dB steps). The number of action potentials per pulse, mean spike rate, maximal instantaneous discharge, and latency period depend strongly on air temperature, while the variation coefficients of the interspike intervals during the responses were not temperature dependent and vary non-monotonically with stimulus intensity. During responses to a saturating stimulus, the stimulus duration does not affect the activation energy, calculated from an Arrhenius plot, of different physiological features. Adaptation, studied in the responses to 100-ms pulses, is also temperature dependent. This phenomenon has two components, each of which shows different activation energies, suggesting a different membrane origin. High stimulus intensity (90 dB SPL) significantly affects the activation energy of the action potentials and mean spike rate, while the activation energy, of the maximal instantaneous discharge and latency period do not show this strong dependency. The spontaneous A1 cell spike rate varies with temperature, as does the value of the mode of the relative frequency distribution of the interspike interval. The activation energy of the spike rates measured at A1 cell responses to saturating stimuli is in good agreement with that described in amphibian innerear hair cells. It is suggested that this moth auditory receptor cell also has mechanosensitive protein channels.Abbreviations AP/p action potentials per pulse - AP/s action potentials per second - CI confidence interval - E a activation energy - ISI interspike interval - SD standard deviation - VC variation coefficient  相似文献   

17.
规律短音中极短间隔短音诱发的失匹配负电位   总被引:10,自引:0,他引:10  
姜德鸣 Paavi.  P 《生理学报》1994,46(6):561-567
失匹配负电位是听觉事件相关电位的一个成分,它由一系列重复的,同性质的“标准刺激”的物理性质稍有偏离的“偏差刺激”所诱发,在规律性的标准刺激中,偶然的物理性质稍有偏离的刺激,如频率,强度,久度等的些微变化均可诱发MMN。偶然地给于时间上“过早出现”的同样刺激,即频率,强度,久度完全相同,只是在规律性的标准刺激中过早地出现的刺激,作为偏差刺激,也可以诱发出NNM。本研究在恒定刺激间隔ISI=600ms  相似文献   

18.
In acute experiments on immobilized carps, under dark adaptation conditions, studies have been made on the electrical activity of the telencephalon and midbrain tectum. It was found that in the latter photostimulation evokes local rhythmic activity which includes fast (30-50 Hz) phasic (200-300 ms) and slow (8-14 Hz) tonic (up to 3-4 s) components. High rhythm of this activity may be observed only in "healthy" preparations, coinciding with on-rhythm in the midbrain tectum. Low rhythm does not depend on the presence of rhythmic activity in the tectum. Various aspects of the development of the thalamo-telencephalic system in vertebrates are discussed.  相似文献   

19.
We examined the role of feature matching in motion perception. The stimulus sequence was constructed from a vertical, 1 cycle deg-1 sinusoidal grating divided into horizontal strips of equal height, where alternate strips moved leftward and rightward. The initial relative phase of adjacent strips was either 0 degree (aligned) or 90 degrees (non-aligned) and the motion was sampled at 90 degrees phase steps. A blank interstimulus interval (ISI) of 0-117 ms was introduced between each 33 ms presentation of the stimulus frames. The observers had to identify the direction of motion of the central strip. Motion was perceived correctly at short ISIs, but at longer ISIs performance was much better for the non-aligned sequence than the aligned sequence. This difference in performance may reflect a role for feature correspondence and grouping of features in motion perception at longer ISIs. In the aligned sequence half the frames consisted of a single coherent vertical grating, while the interleaved frames contained short strips. We argue that to achieve feature matching over time, the long edge and bar features must be broken up perceptually (segmented) into shorter elements before these short segments can appear to move in opposite directions. This idea correctly predicted that overlaying narrow, stationary, black horizontal lines at the junctions of the grating strips would improve performance in the aligned condition. The results support the view that, in addition to motion energy, feature analysis and feature tracking play an important role in motion perception.  相似文献   

20.
The ability to determine the interval and duration of sensory events is fundamental to most forms of sensory processing, including speech and music perception. Recent experimental data support the notion that different mechanisms underlie temporal processing in the subsecond and suprasecond range. Here, we examine the predictions of one class of subsecond timing models: state-dependent networks. We establish that the interval between the comparison and the test interval, interstimulus interval (ISI), in a two-interval forced-choice discrimination task, alters the accuracy of interval discrimination but not the point of subjective equality—i.e. while timing was impaired, subjective time contraction or expansion was not observed. We also examined whether the deficit in temporal processing produced by short ISIs can be reduced by learning, and determined the generalization patterns. These results show that training subjects on a task using a short or long ISI produces dramatically different generalization patterns, suggesting different forms of perceptual learning are being engaged. Together, our results are consistent with the notion that timing in the range of hundreds of milliseconds is local as opposed to centralized, and that rapid stimulus presentation rates impair temporal discrimination. This interference is, however, decreased if the stimuli are presented to different sensory channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号