首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4 In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

2.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4. In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

3.
In a medium containing high concentration of yeast extract was observed aerobic formation of a large amount of ethanol by various yeasts of non-fermenting or extremely poor fermenting type such as Torulopsis famata, Candida polymorpha and Pichia membranaefaciens etc. Acetaldehyde formed as a metabolic intermediate leading to ethanol formation was trapped by the addition of sulfite and was identified as 2,4-dinitrophenyl-hydrazone.  相似文献   

4.
It has been reported that Candida albicans can form germ-tubes only in the narrow pH range of 6-8, and that by changing only the pH one can regulate germ-tube formation. We found that the pH minimum for germ-tube formation could be dramatically lowered by eliminating the glucose present in many induction solutions. Lee's medium lacking glucose, ethanol, N-acetyl-D-glucosamine, and proline induced germ-tubes at pH values as low as 3 under most conditions. The presence of as little as 1 mM-glucose in these induction solutions was sufficient to cause the cells to grow either as yeasts with multiple buds or as pseudohyphae when the pH was 3.7. However, when C. albicans was grown in any of the above induction solutions (with the exception of ethanol), containing 200 mM-glucose buffered at pH 5.8, not only were germ-tubes formed, but their rate of formation and length were also increased. Preincubation of the cells in a solution buffered at pH 3.7 and containing 200 mM-glucose, before exposure to induction solutions lacking glucose at pH 3.7 or at pH 5.8, did not inhibit germ-tube formation. Likewise, addition of glucose after 45 min exposure to an induction solution was without effect. Theophylline and dibutyryl cAMP did not counteract the action of glucose. Other sugars which suppressed germ-tube formation at low pH were fructose, galactose, mannose, xylose, gluconic acid and the nonmetabolizable sugar 3-O-methylglucose. These results indicate that pH does not directly regulate dimorphism in C. albicans, and that glucose or its metabolites may play an important role.  相似文献   

5.
5-Aminolevulinic acid (ALA) is an intermediate in the biosynthesis of tetrapyrroles. Its current production is expensive. We have developed a low-cost medium for Propionibacterium acidipropionici to produce extracellular ALA. When grown at 35?°C on a medium containing 3?% (w/v) food-grade sodium lactate supplemented with 18?g glycine/l, 4.05?g succinate/l, 1.8?g glucose/l, pH 7, it produced ALA up to 7.7?g/l over 6?days. Plant-growth promoting activity assays showed that the ALA was biologically active.  相似文献   

6.
Mixed bacterial cultures obtained from polychlorinated biphenyl-contaminated river sediments are capable of degrading monohalogenated biphenyls under simulated natural conditions. Culture conditions include river water as supportive medium and mixed bacterial cultures obtained from river sediments. Degradation occurs when the substrates are supplied as the sole carbon source or when added together with glucose. The degradation rates of 2-, 3-, and 4-chlorobiphenyl, at 30 micrograms ml-1, were 1.1, 1.6, and 2.0 micrograms ml-1 day-1, respectively. Monobrominated biphenyls, including 2-, 3-, and 4-bromobiphenyl, were degraded at rates of 2.3, 4.2, and 1.4 micrograms ml-1 day-1, respectively. Metabolites, including halogenated benzoates, were detected by high-performance liquid chromatography and mass spectrometry. By using chlorophenyl ring-labeled monochlorobiphenyls as substrates, total mineralization (defined as CO2 production from the chlorophenyl ring) was observed for 4-chlorobiphenyl but not for 2-chlorobiphenyl. Rates of total mineralization of 4-chlorobiphenyl (at 39 to 385 micrograms ml-1 levels) were dependent on substrate concentration, whereas variation of cell number in the range of 10(5) to 10(7) cells ml-1 had no significant effects. Simulated sunlight enhanced the rate of mineralization by ca. 400%.  相似文献   

7.
Mixed bacterial cultures obtained from polychlorinated biphenyl-contaminated river sediments are capable of degrading monohalogenated biphenyls under simulated natural conditions. Culture conditions include river water as supportive medium and mixed bacterial cultures obtained from river sediments. Degradation occurs when the substrates are supplied as the sole carbon source or when added together with glucose. The degradation rates of 2-, 3-, and 4-chlorobiphenyl, at 30 micrograms ml-1, were 1.1, 1.6, and 2.0 micrograms ml-1 day-1, respectively. Monobrominated biphenyls, including 2-, 3-, and 4-bromobiphenyl, were degraded at rates of 2.3, 4.2, and 1.4 micrograms ml-1 day-1, respectively. Metabolites, including halogenated benzoates, were detected by high-performance liquid chromatography and mass spectrometry. By using chlorophenyl ring-labeled monochlorobiphenyls as substrates, total mineralization (defined as CO2 production from the chlorophenyl ring) was observed for 4-chlorobiphenyl but not for 2-chlorobiphenyl. Rates of total mineralization of 4-chlorobiphenyl (at 39 to 385 micrograms ml-1 levels) were dependent on substrate concentration, whereas variation of cell number in the range of 10(5) to 10(7) cells ml-1 had no significant effects. Simulated sunlight enhanced the rate of mineralization by ca. 400%.  相似文献   

8.
C Fung  D Glenister  R J Miles  B M Nafi 《Microbios》1988,53(215):91-100
Cultures of Neisseria sicca incubated at 37 degrees C died rapidly (within 36 h) after growth ceased. Re-suspending cells in a brain heart infusion broth and storing at 4 degrees C greatly reduced the rate of decline in viability (decimal reduction time 6 days). An important factor in maintaining viability was apparently the presence of external energy source(s). Survival comparable to that in broth was obtained by incubation in Ringer's solution with pyruvate plus glucose (but not with pyruvate or glucose alone). Medium pH had little effect on survival in the range pH 7.0 to 8.5. Energy sources also promoted survival of cells in Ringer's solution or a buffered salts solution at 37 degrees C. Highest levels of survival (up to 30% at 24 h) were obtained with pyruvate, lactate, proline and glutamate. A number of other amino acids and the tricarboxylic acid cycle intermediates, isocitrate, oxoglutarate, succinate, fumarate, malate and oxaloacetate, enhanced survival to a lesser extent.  相似文献   

9.
The sporulation of Clostridium perfringens NCTC 8798 was studied after exposing vegetative cells to: pH values of 1.5 to 8.0 in fluid thioglycolate broth (for 2h) and then transferring them to Duncan-Strong (DS) sporulation medium; sodium cholate or sodium deoxycholate (0.3 to 6.5 mM) in DS medium; or Rhia-Solberg medium with 0.4% (wt/wt) starch, glucose, or both added at 0 to 55 mM. At pH 1.5, no culturable heat-resistant spores were formed. For cells exposed to pH 3.0, 4.0, 5.0, or 6.0, increases in heat-resistant spores were not seen until after a lag of 12 to 13 h, whereas the lag was only 2 to 3 h for cells exposed to pH 7.0 or 8.0. Maximal spore crops were produced after only 6 to 8 h for cells exposed to pH 7 or 8, but 16 to 18 h was required for production of maximal spore crops by cells exposed to the lower-pH media. The addition of sodium cholate (3.5 to 6.5 mM) to DS medium only slightly reduced the culturable heat-resistant spore count from 1.9 X 10(7) to 3 X 10(6)/ml. The addition of 1.8 mM or more sodium deoxycholate reduced the culturable heat-resistant spore count to less than 10/ ml. When either starch or glucose alone was added to Rhia-Solberg medium there was no production of culturable heat-resistant spores, but a combination of 0.4% (wt/wt) starch and 4.4 mM glucose yielded 6 X 10(5) spores/ml. The spore production remained at this level for glucose concentrations of 6 to 22 mM, but then declined to about 3 X 10(3) spores per ml at higher concentrations.  相似文献   

10.
The sporulation of Clostridium perfringens NCTC 8798 was studied after exposing vegetative cells to: pH values of 1.5 to 8.0 in fluid thioglycolate broth (for 2h) and then transferring them to Duncan-Strong (DS) sporulation medium; sodium cholate or sodium deoxycholate (0.3 to 6.5 mM) in DS medium; or Rhia-Solberg medium with 0.4% (wt/wt) starch, glucose, or both added at 0 to 55 mM. At pH 1.5, no culturable heat-resistant spores were formed. For cells exposed to pH 3.0, 4.0, 5.0, or 6.0, increases in heat-resistant spores were not seen until after a lag of 12 to 13 h, whereas the lag was only 2 to 3 h for cells exposed to pH 7.0 or 8.0. Maximal spore crops were produced after only 6 to 8 h for cells exposed to pH 7 or 8, but 16 to 18 h was required for production of maximal spore crops by cells exposed to the lower-pH media. The addition of sodium cholate (3.5 to 6.5 mM) to DS medium only slightly reduced the culturable heat-resistant spore count from 1.9 X 10(7) to 3 X 10(6)/ml. The addition of 1.8 mM or more sodium deoxycholate reduced the culturable heat-resistant spore count to less than 10/ ml. When either starch or glucose alone was added to Rhia-Solberg medium there was no production of culturable heat-resistant spores, but a combination of 0.4% (wt/wt) starch and 4.4 mM glucose yielded 6 X 10(5) spores/ml. The spore production remained at this level for glucose concentrations of 6 to 22 mM, but then declined to about 3 X 10(3) spores per ml at higher concentrations.  相似文献   

11.
Summary Bacillus subtilis CD4, when grown in nutrient broth or minimal medium in presence of xylan, produced extracellular xylanase that hydrolyzed xylan optimally at pH 5. The enzyme was induced by xylan, xylose and glucose. Addition of xylose or glucose in xylan containing medium did not affect enzyme production. The structural gene encoding xylanase was cloned and expressed in E. coli. The recombinant enzyme exhibited similar properties like that of native enzyme including resistance to repression by xylose and glucose.  相似文献   

12.
The human adenovirus/293S cell expression system is used for the production of either recombinant protein or adenovirus vectors for use in gene therapy. In this work, the production of protein tyrosine phosphatase (PTP1C) was used as a model for the scale-up of both applications. Maximum specific production of 30 to 45 mug of active protein/10(6) cells was maintained upon infection with adenovirus vectors at cell densities between 2 x 10(6) to 3 x 10(6) cells/mL in a 3.5-L bioreactor. This was achieved by resuspending the culture in fresh medium at infection time. The pH was kept at 7.0 throughout the experiment and, at 24 h postinfection, glucose and essential amino acids were added. Attempts to replace the complete change of medium at the time of infection with nutrient supplementation of the used medium led to lower production levels, suggesting that protein expression was limited not by the absence of a key nutrient but by inhibitory factors. Two potentially inhibitory factors were investigated: lactic acid accumulation and increased osmolarity. Medium acidification such as that which would be brought about by lactic acid accumulation was shown to depress PTP1C production. The lactate molecule itself decreased the cell viability when added in concentrations of 20 mM or more. But the specific productivity was affected at higher lactate concentrations of 40 mM or more. Additions of glucose, amino acids, and NaHCO(3) used to control pH, led to increases in osmolarity. Osmolarities above 400 mOsm lowered cell density. However, specific production was not significantly affected below 500 mOsm. But, at 500 mOsm, PTP1C production peak was shifted from 48 to 72 hpi. Because of the cell loss, this per cell yield increase did not translate into higher volumetric production. When glucose concentrations was kept at 5 mM by fed-batch addition, lactate production and increases in osmolarity were reduced. In shake flasks, this method permitted maximum production with cells resuspended either in fresh or spent medium at infection. This fed-batch process was implemented successfully at the 3.5-L scale. Fed-batch with glucose may provide a means to increase infected-cell density beyond 3 x 10(6) cells/mL.  相似文献   

13.
Synthesis of total lipid and aflatoxin by Aspergillus parasiticus as affected by various concentrations of glucose and nitrogen in a defined medium and by different incubation temperatures was studied. Maximal yields of lipid and aflatoxin were obtained with 30% glucose, whereas mold growth, expressed as dry weight, was maximal when the medium contained 10% glucose. Maximal mold growth occurred when the medium contained 3% (NH(4))(2)SO(4); however, 1% (NH(4))(2)SO(4) favored maximum accumulation of lipid and aflatoxin. Growth of mold and synthesis of lipid and toxin also varied with the incubation temperature. Maximal mold growth occurred at 35 C, whereas most toxin appeared at 25 C. Maximal production of lipid occurred at 25 and 35 C but production was more rapid at 35 C. Essentially all glucose in the medium (5% initially) was utilized in 3 days at 25 and 35 C but not in 7 days at 15 and 45 C. Patterns for formation of lipid and aflatoxin were similar at 15 and 25 C when a complete growth medium was used and at 28 C when the substrate contained various concentrations of glucose or (NH(4))(2)SO(4). They were dissimilar when the mold grew at 35 or 45 C. At these temperatures lipid was produced preferentially and only small amounts of aflatoxin appeared.  相似文献   

14.
The genus Pectinatus has been often reported in beer spoilage with off-flavours. The bacteria are strictly anaerobic, Gram-negative rods. Propionate and acetate are the main fermentation products from glucose in the two species belonging to the genus, P. cerevisiiphilus and P. frisingensis. Amino acids routinely present at a high level in beer were not growth substrates for both species, and a significant accumulation of succinate was observed with lactate as growth substrate. Both Pectinatus ssp. showed almost identical fermentation balances on glucose. Growth kinetics of both glucose-grown species were unchanged under a N2, H2 or 20% CO2-containing atmosphere. Combinations of culture medium pH values from pH 3·9 to pH 7·2, of glucose levels between 5 and 55 mmol l-1, and of lactate concentrations varied from 4 to 40 mmol l-1 demonstrated that biomass and volatile fatty acids production were proportional to glucose concentration for both Pectinatus species. A significant increase of volatile fatty acid production was measured for both species at the lowest pH values with a lactate or a glucose concentration increase. The maximum biomass production was observed at pH 6·2 for P. cerevisiiphilus , and between pH 4·5 and pH 4·9 for P. frisingensis. Glucose and lactate or pH value were dependent with regard to propionate and acetate production in P. frisingensis. On the other hand, the variations of these three parameters were independent with regard to biomass production for both strains, and to volatile fatty acids production for P. cerevisiiphilus. Addition of ethanol to glucose-grown cultures completely inhibited growth at 1·3 mol l-1 ethanol for P. cerevisiiphilus , and at 1·8 mol l-1 for P. frisingensis.  相似文献   

15.
Selective isolation of mycobacteria from soil: a statistical analysis approach   总被引:10,自引:0,他引:10  
We compared four decontamination methods for the isolation of mycobacteria from soil specimens. Different media were used: L?wenstein-Jensen, Ogawa and various modified Ogawa media. Statistical analysis demonstrated that the best results (low contamination and high positivity rates) were obtained when the specimens were incubated in trypticase soy broth, treated with solutions containing malachite green and cycloheximide, then decontaminated with sodium hydroxide and inoculated onto Ogawa media. The lowest contamination rates were obtained with Ogawa medium containing 500 micrograms cycloheximide ml-1. The use of these techniques is proposed for the isolation of mycobacteria from heavily contaminated clinical specimens as well as from soil.  相似文献   

16.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

17.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

18.
Clostridium botulinum spores were sublethally damaged by exposure to 12 or 28 micrograms of available chlorine per ml for 2 min at 25 degrees C and pH 7.0. The damaging dose was 2.7 x 10(-6) to 3.1 x 10(-6) micrograms of available chlorine per spore. Damage was manifested by a consistent 1.6 to 2.4 log difference between the most probable number enumeration of spores (modified peptone colloid medium) and the colony count (modified peptone yeast extract glucose agar); this did not occur with control spores. Damaged spores could be enumerated by the colony count procedure. Germination responses were measured in several defined and nondefined media. Hypochlorite treatment altered the rate and extent of germination in some of the media. Calcium lactate (9 mM) permitted L-alanine (4.5 mM) germination of hypochlorite-treated spores in a medium containing 12 or 55 mM sodium bicarbonate, 0.8 mM sodium thiosulfate, and 100 mM Tris-hydrochloride (pH 7.0) buffer. Tryptose inhibited L-alanine germination of the spores. Treatments with hypochlorite and with hydrogen peroxide (7%, 25 degrees C, 2 min) caused similar enumeration and germination responses, indicating that the effect was due to a general oxidation phenomenon.  相似文献   

19.
Candida albicans (3153A) was found to exhibit extensive germ-tube and mycelial development at 25°C when transferred from amino acid synthetic medium at pH 6 to medium of pH 7. Significant germ-tube formation was detectable after approximately 8 h and in all experimental treatments, the peaks of maximal germination occurred at approximately 40–44 h. Such a transition was not only dependent on the initial pH of the medium but also on the glucose concentration and inoculum size. The optimum initial glucose concentration and inoculum size for maximal germ-tube development was 1.25% and 2×106 cells ml–1 respectively and above or below these values the extent of germ-tube formation was greatly reduced.  相似文献   

20.
Lactate production in the perfused rat liver   总被引:10,自引:9,他引:1       下载免费PDF全文
1. In aerobic conditions the isolated perfused liver from well-fed rats rapidly formed lactate from endogenous glycogen until the lactate concentration in the perfusion medium reached about 2mm (i.e. the concentration of lactate in blood in vivo) and then production ceased. Pyruvate was formed in proportion to the lactate, the [lactate]/[pyruvate] ratio remaining between 8 and 15. 2. The addition of 5mm- or 10mm-glucose did not affect lactate production, but 20mm- and 40mm-glucose greatly increased lactate production. This effect of high glucose concentration can be accounted for by the activity of glucokinase. 3. The perfused liver released glucose into the medium until the concentration was about 6mm. When 5mm- or 10mm-glucose was added to the medium much less glucose was released. 4. At high glucose concentrations (40mm) more glucose was taken up than lactate and pyruvate were produced; the excess of glucose was probably converted into glycogen. 5. In anaerobic conditions, livers of well-fed rats produced lactate at relatively high rates (2.5mumol/min per g wet wt.). Glucose was also rapidly released, at an initial rate of 3.2mumol/min per g wet wt. Both lactate and glucose production ceased when the liver glycogen was depleted. 6. Addition of 20mm-glucose increased the rate of anaerobic production of lactate. 7. d-Fructose also increased anaerobic production of lactate. In the presence of 20mm-fructose some glucose was formed anaerobically from fructose. 8. In the perfused liver from starved rats the rate of lactate formation was very low and the increase after addition of glucose and fructose was slight. 9. The glycolytic capacity of the liver from well-fed rats is equivalent to its capacity for fatty acid synthesis and it is pointed out that hepatic glycolysis (producing acetyl-CoA in aerobic conditions) is not primarily an energy-providing process but part of the mechanism converting carbohydrate into fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号