首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The sterol composition of Aspergillus fumigatus for the biosynthesis of ergosterol is of interest since this pathway is the target for many antifungal drugs in clinical use. The sterol composition of this fungal species was analyzed by gas chromatography-mass spectrometry in different strains (susceptible and resistant to azole drugs). Also, sterols were analyzed in several A. fumigatus mutant strains deficient in enzymatic steps of the ergosterol biosynthesis pathway such as 14-alpha sterol demethylases (Cyp51A and Cyp51B) and C-5 sterol desaturases (Erg3A, Erg3B and Erg3C). All sterols identified from azole-resistant A. fumigatus strains were qualitatively and quantitatively similar to the susceptible strain (CM-237). However, sterol composition of mutants strains were different depending on the lacking enzyme. The analysis of the sterol composition in these mutant strains led to a better understanding of the ergosterol biosynthesis pathway in this important fungus.  相似文献   

3.
The sterol biosynthesis pathway of Arabidopsis produces a large set of structurally related phytosterols including sitosterol and campesterol, the latter being the precursor of the brassinosteroids (BRs). While BRs are implicated as phytohormones in post-embryonic growth, the functions of other types of steroid molecules are not clear. Characterization of the fackel (fk) mutants provided the first hint that sterols play a role in plant embryogenesis. FK encodes a sterol C-14 reductase that acts upstream of all known enzymatic steps corresponding to BR biosynthesis mutants. Here we report that genetic screens for fk-like seedling and embryonic phenotypes have identified two additional genes coding for sterol biosynthesis enzymes: CEPHALOPOD (CPH), a C-24 sterol methyl transferase, and HYDRA1 (HYD1), a sterol C-8,7 isomerase. We describe genetic interactions between cph, hyd1 and fk, and studies with 15-azasterol, an inhibitor of sterol C-14 reductase. Our experiments reveal that FK and HYD1 act sequentially, whereas CPH acts independently of these genes to produce essential sterols. Similar experiments indicate that the BR biosynthesis gene DWF1 acts independently of FK, whereas BR receptor gene BRI1 acts downstream of FK to promote post-embryonic growth. We found embryonic patterning defects in cph mutants and describe a GC-MS analysis of cph tissues which suggests that steroid molecules in addition to BRs play critical roles during plant embryogenesis. Taken together, our results imply that the sterol biosynthesis pathway is not a simple linear pathway but a complex network of enzymes that produce essential steroid molecules for plant growth and development.  相似文献   

4.
A crucial role for sterols in plant growth and development is underscored by the identification of three Arabidopsis sterol biosynthesis mutants that exhibit embryonic defects: fackel (fk), hydra1 (hyd1), and sterol methyltransferase 1/cephalopod (smt1/cph). We have taken a dual approach of sterol profiling and ultrastructural analysis to investigate the primary defects underlying the mutant phenotypes. Comprehensive gas chromatography GC-MS analysis of hyd1 in comparison to fk reveals an abnormal accumulation of unique sterol intermediates in each case. Sterol profiling of the fk hyd1 double mutant provides genetic evidence that FK C-14 reductase acts upstream of HYD1 C-8,7 isomerase. Despite distinct differences in sterol profiles, fk and hyd1 as well as smt1/cph share ultrastructural features such as incomplete cell walls and aberrant cell wall thickenings in embryonic and post-embryonic tissues. The common defects are coupled with ectopic callose and lignin deposits. We show that all three mutants exhibit a deficiency in cellulose, but are not reduced in pectin and sugars of the cell wall and cytosol. The sterol biosynthesis inhibitors 15-azasterol and fenpropimorph also cause cell wall gaps in dividing root cells and a reduction in bulk cellulose, corroborating that the cell wall abnormalities are due to altered sterol composition. Our results demonstrate that sterols are crucial for cellulose synthesis in the building of the plant cell wall.  相似文献   

5.
Analysis of sterols of Saccharomyces cerevisiae mutants N3, N15, N26, and N3H, defective in sterol biosynthesis, was performed. Strains N3, N15, and N26 were isolated from their mother strain, M10, by screening with nystatin (Nagai et al. (1980) Mie Med. J. 30, 215-224), and strain N3H was isolated from N3 as a doubly-mutated strain. The main sterols of N3, N15, N26, and N3H were ergosta-7,22-dienol, ergost-8-enol, cholesta-5,7,24-trienol, and ergosta-7,22,24(28)-trienol, respectively. The former three strains were characterized as defective in delta 5-desaturation, delta 8--delta 7 isomerization, and C-24 transmethylation. Strain N3H was found to be defective in delta 5-desaturation as well as in delta 24(28)-reduction. However, the defect of N26 and N3H was suggested to be leaky, since small amounts of ergosterol and ergosta-7,22-dienol were found in these mutants, respectively. In N15, an accumulation (2% in total sterols) of the compound likely to be hydroxylated sterol was found. By aerobic adaptation of these strains, the accumulation of these strains, the accumulations of ergosta-7,22-dienol (22 mg/g dry cells), ergosta-7,22,24(28)-trienol (24 mg), ergosta-8,24(28)-dienol (18 mg), and cholesta-8,24-dienol (22 mg) reached a maximum in N3, N3H, N15, and N26 after 20, 20, 30, and 30 h, respectively. These strains appear to be useful for making 14C-labeled and non-labeled preparations of the above sterols.  相似文献   

6.
7.
1. Incubation of a rat liver homogenate with 3R-[2-(14)C,(5R)-5-(3)H(1)]mevalonic acid gave cholesterol with (3)H/(14)C atomic ratio 6:5. 2. Conversion of the labelled cholesterol into 3beta-acetoxy-6-nitrocholest-5-ene or cholest-4-ene-3,6-dione resulted in the loss of one tritium atom from C-6. 3. These results show that during cholesterol biosynthesis the 6alpha-hydrogen atom of a precursor sterol is eliminated during formation of the C-5-C-6 double bond. 4. Incorporation of 3R-[2-(14)C,(5R)-5-(3)H(1)]mevalonic acid into the sterols of larch (Larix decidua) leaves gave labelled cycloartenol and beta-sitosterol with (3)H/(14)C atomic ratios 6:6 and 6:5 respectively. 5. One tritium atom was lost from C-6 on conversion of the labelled beta-sitosterol into either 3beta-acetoxy-6-nitrostigmast-5-ene or stigmast-4-ene-3,6-dione, demonstrating that formation of the C-5-C-6 double bond of phytosterols also involves the elimination of the 6alpha-hydrogen atom of a precursor sterol. 6. The 3R-[2-(14)C,(5R)-5-(3)H(1)]mevalonic acid was also incorporated by larch (L. decidua) leaves into a sterol that co-chromatographed with 28-isofucosterol. Confirmation that the radioactivity was associated with 28-isofucosterol was obtained by co-crystallization with carrier 28-isofucosterol and ozonolysis of the acetate to give radioactively labelled 24-oxocholesteryl acetate. 7. The significance of these results to phytosterol biosynthesis is discussed.  相似文献   

8.
The gene TTHERM_00438800 (DES24) from the ciliate Tetrahymena thermophila encodes a protein with three conserved histidine clusters, typical of the fatty acid hydroxylase superfamily. Despite its high similarity to sterol desaturase-like enzymes, the phylogenetic analysis groups Des24p in a separate cluster more related to bacterial than to eukaryotic proteins, suggesting a possible horizontal gene transfer event. A somatic knockout of DES24 revealed that the gene encodes a protein, Des24p, which is involved in the dealkylation of phytosterols. Knocked-out mutants were unable to eliminate the C-24 ethyl group from C(29) sterols, whereas the ability to introduce other modifications, such as desaturations at positions C-5(6), C-7(8), and C-22(23), were not altered. Although C-24 dealkylations have been described in other organisms, such as insects, neither the enzymes nor the corresponding genes have been identified to date. Therefore, this is the first identification of a gene involved in sterol dealkylation. Moreover, the knockout mutant and wild-type strain differed significantly in growth and morphology only when cultivated with C(29) sterols; under this culture condition, a change from the typical pear-like shape to a round shape and an alteration in the regulation of tetrahymanol biosynthesis were observed. Sterol analysis upon culture with various substrates and inhibitors indicate that the removal of the C-24 ethyl group in Tetrahymena may proceed by a mechanism different from the one currently known.  相似文献   

9.
Terpenoids or isoprenoids constitute a vast family of organic compounds that includes sterols and carotenoids. The terpenoids in many organisms share early steps in their biosynthesis, including the synthesis of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) and its conversion to mevalonate. We have cloned and characterised the genes hmgS for HMG-CoA synthase and hmgR for HMG-CoA reductase from the Zygomycete Phycomyces blakesleeanus. Single copies of these genes are present in the Phycomyces genome. The predicted product of hmgS is largely hydrophilic and that of hmgR has eight putative transmembrane segments and a large hydrophilic domain. The hydrophilic domain suffices for catalytic activity, as shown by expressing it in Escherichia coli. Several features in the promoter of hmgS and in HMG-CoA reductase resemble motifs known to be involved in sterol-mediated regulation and sterol sensing. Carotene-overproducing mutants contain more hmgS mRNA than the wild type, possibly in response to an increased demand for HMG-CoA.  相似文献   

10.
In Saccharomyces cerevisiae and Candida albicans, two enzymes of the ergosterol biosynthetic pathway, oxidosqualene cyclase (Erg7p) and 3-keto reductase (Erg27p) interact such that loss of the 3-keto reductase also results in a concomitant loss of activity of the upstream oxidosqualene cyclase. This interaction wherein Erg27p has a stabilizing effect on Erg7p was examined to determine whether Erg7p reciprocally has a protective effect on Erg27p. To this aim, three yeast strains each lacking the ERG7 gene were tested for 3-ketoreductase activity by incubating either cells or cell homogenates with unlabeled and radiolabeled 3-ketosteroids. In these experiments, the ketone substrates were effectively reduced to the corresponding alcohols, providing definitive evidence that oxidosqualene cyclase is not required for the 3-ketoreductase activity. This suggests that, in S. cerevisiae, the protective relationship between the 3-keto reductase (Erg27p) and oxidosqualene cyclase (Erg7p) is not reciprocal. However, the absence of the Erg7p, appears to affect other enzymes of sterol biosynthesis downstream of lanosterol formation. Following incubation with radiolabeled and non-radiolabeled 3-ketosteroids we detected differences in hydroxysteroid accumulation and ergosterol production between wild-type and ERG7 mutant strains. We suggest that oxidosqualene cyclase affects Erg25p (C-4 sterol oxidase) and/or Erg26p (C-3 sterol dehydrogenase/C-4 decarboxylase), two enzymes that, in conjunction with Erg27p, are involved in C-4 sterol demethylation.  相似文献   

11.
The yeast C-8,7 sterol isomerase contains a polyvalent high-affinity drug binding site similar to mammalian sigma receptors. Exogenously supplied sigma ligands inhibit sterol biosynthesis in yeast, demonstrating a pharmacological relationship between sigma ligand-binding and C-8,7 sterol isomerase activity. We report the isolation of an Arabidopsis thaliana C-8,7 sterol isomerase by functional complementation of the corresponding sterol mutant in yeast and its characterization by exposure to sigma ligands. The yeast erg2 mutant, which lacks the C-8,7 sterol isomerase gene and activity, was transformed with an Arabidopsis cDNA yeast expression library. Transformed colonies were selected for restoration of C-8,7 sterol isomerase activity (i.e. wild-type ergosterol production) by enhanced resistance to the antibiotic cycloheximide. Sterols produced in complemented lines were characterized by gas chromatography-mass spectroscopy (GC-MS). The full-length A. thaliana cDNA (pA.t.SI1) that complemented the erg2 mutation contains an open reading frame encoding a 21 kDa protein that shares 68% similarity and 35% amino acid identity to the recently isolated mouse C-8,7 sterol isomerase. The sigma ligands, haloperidol, ifenprodil and verapamil inhibited the production of ergosterol in wild-type Saccharomyces cerevisiae and in the erg2 mutant complemented with pA.t.SI1. Structural and biochemical similarities between the A. thaliana C-8,7 sterol isomerase and the mammalian emopamil-binding protein (EBP) are discussed.  相似文献   

12.
Sterols are major components of the plasma membrane, but their functions in this membrane are not well understood. We isolated a mutant defective in the internalization step of endocytosis in a gene (ERG2) encoding a C-8 sterol isomerase that acts in the late part of the ergosterol biosynthetic pathway. In the absence of Erg2p, yeast cells accumulate sterols structurally different from ergosterol, which is the major sterol in wild-type yeast. To investigate the structural requirements of ergosterol for endocytosis in more detail, several erg mutants (erg2Delta, erg6Delta, and erg2Deltaerg6Delta) were made. Analysis of fluid phase and receptor-mediated endocytosis indicates that changes in the sterol composition lead to a defect in the internalization step. Vesicle formation and fusion along the secretory pathway were not strongly affected in the ergDelta mutants. The severity of the endocytic defect correlates with changes in sterol structure and with the abundance of specific sterols in the ergDelta mutants. Desaturation of the B ring of the sterol molecules is important for the internalization step. A single desaturation at C-8,9 was not sufficient to support internalization at 37 degrees C whereas two double bonds, either at C-5,6 and C-7,8 or at C-5,6 and C-8,9, allowed internalization.  相似文献   

13.
Composition of sterol fractions of nystatin-resistantCandida maltosa strains was determined. Using UV-spectrometry, TLC and GLC-MS it was demonstrated that resistance to nystatin is connected with the composition alterations of yeast cell sterols. Block of different stages of ergosterol biosynthesis was revealed in some mutants,viz. C-24-transmethylation, Δ8→Δ7, 14α-demethylation, C-5(6)-dehydrogenation, reduction of C-14(15) and C-24(28) double bonds.  相似文献   

14.
The actinobacterial cholesterol catabolic gene cluster contains a subset of genes that encode β-oxidation enzymes with a putative role in sterol side chain degradation. We investigated the physiological roles of several genes, i.e., fadD17, fadD19, fadE26, fadE27, and ro04690DSM43269, by gene inactivation studies in mutant strain RG32 of Rhodococcus rhodochrous DSM43269. Mutant strain RG32 is devoid of 3-ketosteroid 9α-hydroxylase (KSH) activity and was constructed following the identification, cloning, and sequential inactivation of five kshA gene homologs in strain DSM43269. We show that mutant strain RG32 is fully blocked in steroid ring degradation but capable of selective sterol side chain degradation. Except for RG32ΔfadD19, none of the mutants constructed in RG32 revealed an aberrant phenotype on sterol side chain degradation compared to parent strain RG32. Deletion of fadD19 in strain RG32 completely blocked side chain degradation of C-24 branched sterols but interestingly not that of cholesterol. The additional inactivation of fadD17 in mutant RG32ΔfadD19 also did not affect cholesterol side chain degradation. Heterologously expressed FadD19DSM43269 nevertheless was active toward steroid-C26-oic acid substrates. Our data identified FadD19 as a steroid-coenzyme A (CoA) ligase with an essential in vivo role in the degradation of the side chains of C-24 branched-chain sterols. This paper reports the identification and characterization of a CoA ligase with an in vivo role in sterol side chain degradation. The high similarity (67%) between the FadD19(DSM43269) and FadD19H37Rv enzymes further suggests that FadD19H37Rv has an in vivo role in sterol metabolism of Mycobacterium tuberculosis H37Rv.  相似文献   

15.
The biosynthesis of cyclic triterpenoids in ten saponin-deficient (sad) mutant varieties of the diploid oat Avena strigosa is reported. Two mutants were found to be deficient in 2,3-oxidosqualene:beta-amyrin cyclase (OSbetaAC) (EC 5.4.99) and thus unable to produce the beta-amyrin necessary for the production of avenacins. The other mutants studied had post beta-amyrin lesions. 2,3-Oxidosqualene:cycloartenol cyclase (OSCC) (EC 5.4.99.8) needed for sterol formation was present in all ten mutants.  相似文献   

16.
Microsomes from sunflower seedlings were used to investigate the transition state coordinate for the C-24 methylation reaction that mediates phytosterol biosynthesis. They were then used to study structurally related cationic and uncharged compounds of the natural sterol substrate, which were designed to interfere with the reaction progress. The hypothetical reaction course is described to proceed through an Sn2 formation of an activated complex involving the initial production of a covalent structure with a dative bond (methyl from AdoMet attacks si-face of the 24,25-double bond of the sterol) and the secondary production of a series of high energy intermediates, the stabilization of which determines the final C-24 methylated product. Derivatives of lanosterol and cholesterol with a methyl, hydrogen, oxygen, or bromine atom introduced into the side chain and/or at C-3 in place of the natural nucleophile were studied as inhibitors that interfere with the formation of the hypothetical tertiary isopropylcarbinyl cation intermediate in the conversion of cycloartenal to 24(28)-methylene cycloartanol. The data indicate the most potent inhibitor is a sterol with an aziridine group attached to C-24(25), which mimics the bridged C-24(25) carbenium ion generated in the transition state, and the methyltransferase possesses two strategic sites: one that recognizes the proximal end of the sterol acting as a proton donor and the other that recognizes the distal end that acts as a proton acceptor. The best fit (binding/catalysis) involves a flat sterol (including substrate and inhibitor) with intact unsubstituted nucleophilic centers at C-3 and C-24 and a freely rotating side chain that can assume the pseudocyclic conformation.  相似文献   

17.
Sterol methyltransferase (SMT), the enzyme from Saccharomyces cerevisiae that catalyzes the conversion of sterol acceptor in the presence of AdoMet to C-24 methylated sterol and AdoHcy, was analyzed for amino acid residues that contribute to C-methylation activity. Site-directed mutagenesis of nine aspartate or glutamate residues and four histidine residues to leucine (amino acids highly conserved in 16 different species) and expression of the resulting mutant proteins in Escherichia coli revealed that residues at H90, Asp125, Asp152, Glu195, and Asp276 are essential for catalytic activity. Each of the catalytically impaired mutants bound sterol, AdoMet, and 25-azalanosterol, a high energy intermediate analogue inhibitor of C-methylation activity. Changes in equilibrium binding and kinetic properties of the mutant enzymes indicated that residues required for catalytic activity are also involved in inhibitor binding. Analysis of the pH dependence of log kcat/Km for the wild-type SMT indicated a pH optimum for activity between 6 and 9. These results and data showing that only the mutant H90L binds sterol, AdoMet, and inhibitor to similar levels as the wild-type enzyme suggest that H90 may act as an acceptor in the coupled methylation-deprotonation reaction. Circular dichroism spectra and chromatographic information of the wild-type and mutant enzymes confirmed retention of the overall conformation of the enzyme during the various experiments. Taken together, our studies suggest that the SMT active center is composed of a set of acidic amino acids at positions 125, 152, 195, and 276, which contribute to initial binding of sterol and AdoMet and that the H90 residue functions subsequently in the reaction progress to promote product formation.  相似文献   

18.
Endogenous brassinosteroids (BRs) in tomato (Lycopersicon esculentum) seedlings are known to be composed of C27- and C28-BRs. The biosynthetic pathways of C27-BRs were examined using a cell-free enzyme solution prepared from tomato seedlings that yielded the biosynthetic sequences cholesterol --> cholestanol and 6-deoxo-28-norteasterone <--> 6-deoxo-28-nor-3-dehydroteasterone <--> 6-deoxo-28-nortyphasterol --> 6-deoxo-28-norcastasterone --> 28-norcastasterone (28-norCS). Arabidopsis CYP85A1 that was heterologously expressed in yeast mediated the conversion of 6-deoxo-28-norCS to 28-norCS. The same reaction was catalyzed by an enzyme solution from wild-type tomato but not by an extract derived from a tomato dwarf mutant with a defect in CYP85. Furthermore, exogenously applied 28-norCS restored the abnormal growth of the dwarf mutant. These findings indicate that the C-6 oxidation of 6-deoxo-28-norCS to 28-norCS in tomato seedlings is catalyzed by CYP85, just as in the conversion of 6-deoxoCS to CS. Additionally, the cell-free solution also catalyzed the C-24 methylation of 28-norCS to CS in the presence of NADPH and S-adenosylmethionine (SAM), a reaction that was clearly retarded in the absence of NADPH and SAM. Thus it seems that C27-BRs, in addition to C28-BRs, are important in the production of more active C28-BRs and CS, where a SAM-dependent sterol methyltransferase appears to biosynthetically connect C27-BRs to C28-BRs. Moreover, the tomato cell-free solution converted CS to 26-norCS and [2H6]CS to [2H3]28-norCS, suggesting that C-28 demethylation is an artifact due to an isotope effect. Although previous feeding experiments employing [2H6]CS suggested that 28-norCS was synthesized from CS in certain plant species, this is not supported in planta. Altogether, this study demonstrated for the first time, to our knowledge, that 28-norCS is not synthesized from CS but from cholesterol. In addition, CS and [2H6]CS were not converted into BL and [2H6]BL, respectively, confirming an earlier finding that the active BR in tomato seedlings is not BL but CS. In conclusion, the biosynthesis of 28-norBRs appears to play a physiologically important role in maintaining homeostatic levels of CS in tomato seedlings.  相似文献   

19.
The photorespiratory Arabidopsis (Arabidopsis thaliana) mutant gld1 (now designated mtkas-1) is deficient in glycine decarboxylase (GDC) activity, but the exact nature of the genetic defect was not known. We have identified the mtkas-1 locus as gene At2g04540, which encodes beta-ketoacyl-[acyl carrier protein (ACP)] synthase (mtKAS), a key enzyme of the mitochondrial fatty acid synthetic system. One of its major products, octanoyl-ACP, is regarded as essential for the intramitochondrial lipoylation of several proteins including the H-protein subunit of GDC and the dihydrolipoamide acyltransferase (E2) subunits of two other essential multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. This view is in conflict with the fact that the mtkas-1 mutant and two allelic T-DNA knockout mutants grow well under nonphotorespiratory conditions. Although on a very low level, the mutants show residual lipoylation of H protein, indicating that the mutation does not lead to a full functional knockout of GDC. Lipoylation of the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase E2 subunits is distinctly less reduced than that of H protein in leaves and remains unaffected from the mtKAS knockout in roots. These data suggest that mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of lipoate biosynthesis in leaves and may occur independently of this pathway in roots.  相似文献   

20.
arv1Delta mutant cells have an altered sterol distribution within cell membranes (Tinkelenberg, A.H., Liu, Y., Alcantara, F., Khan, S., Guo, Z., Bard, M., and Sturley, S. L. (2000) J. Biol. Chem. 275, 40667-40670), and thus it has been suggested that Arv1p may be involved in the trafficking of sterol in the yeast Saccharomyces cerevisiae and also in humans. Here we present data showing that arv1Delta mutants also harbor defects in sphingolipid metabolism. [(3)H]inositol and [(3)H]dihydrosphingosine radiolabeling studies demonstrated that mutant cells had reduced rates of biosynthesis and lower steady-state levels of complex sphingolipids while accumulating certain hydroxylated ceramide species. Phospholipid radiolabeling studies showed that arv1Delta cells harbored defects in the rates of biosynthesis and steady-state levels of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol. Neutral lipid radiolabeling studies indicated that the rate of biosynthesis and steady-state levels of sterol ester were increased in arv1Delta cells. Moreover, these same studies demonstrated that arv1Delta cells had decreased rates of biosynthesis and steady-state levels of total fatty acid and fatty acid alcohols. Gas chromatography/mass spectrometry analyses examining different fatty acid species showed that arv1Delta cells had decreased levels of C18:1 fatty acid. Additional gas chromatography/mass spectrometry analyses determining the levels of various molecular sterol species in arv1Delta cells showed that mutant cells accumulated early sterol intermediates. Using fluorescence microscopy we found that GFP-Arv1p localizes to the endoplasmic reticulum and Golgi. Interestingly, the heterologous expression of the human ARV1 cDNA suppressed the sphingolipid metabolic defects of arv1Delta cells. We hypothesize that in eukaryotic cells, Arv1p functions in the sphingolipid metabolic pathway perhaps as a transporter of ceramides between the endoplasmic reticulum and Golgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号