首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent DNA-streptavidin conjugates have been utilized for the reversible and site-selective immobilization of various biotinylated enzymes and antibodies by DNA-directed immobilization (DDI). Biotinylated alkaline phosphatase, beta-galactosidase, and horseradish peroxidase as well as biotinylated anti-mouse and anti-rabbit immunoglobulins have been coupled to the DNA-streptavidin adapters by simple, two-component incubation and the resulting preconjugates were allowed to hybridize to complementary, surface-bound capture oligonucleotides. Quantitative measurements on microplates indicate that DDI proceeds with a higher immobilization efficiency than conventional immobilization techniques, such as the binding of the biotinylated proteins to streptavidin-coated surfaces or direct physisorption. These findings can be attributed to the reversible formation of the rigid, double-stranded DNA spacer between the surface and the proteins. Moreover, BIAcore measurements demonstrate that DDI allows a reversible functionalization of sensor surfaces with reproducible amounts of proteins. Ultimately, the simultaneous immobilization of different compounds using microstructured oligonucleotide arrays as immobilization matrices demonstrate that DDI proceeds with site selectivity due to the unique specificity of Watson-Crick base pairing.  相似文献   

2.
3.
New tailor-made anionic exchange resins have been prepared, based on films of large polyethylenimine polymers (e.g., MW 25,000) completely coating, via covalent immobilization, the surface of different porous supports (agarose, silica, polymeric resins). Most proteins contained in crude extracts from different sources have been very strongly adsorbed on them. Ionic exchange properties of such composites strongly depend on the size of polyethylenimine polymers as well as on the exact conditions of the covalent coating of the solids with the polymer. On the contrary, similar coating protocols yield similar matrices by using different porous supports as starting material. For example, 77% of all proteins contained in crude extracts from Escherichia coli were adsorbed, at low ionic strength, on the best matrices, and less than 15% of the adsorbed proteins were eluted from the support in the presence of 0.3 M NaCl. Under these conditions, 100% of the adsorbed proteins were eluted from conventional DEAE supports. Such polyethylenimine-support composites were also very suitable to perform very strong and nondistorting reversible immobilization of industrial enzymes. For example, lipase from Candida rugosa (CRL), beta-galactosidase from Aspergillus oryzae and D-amino acid oxidase (DAAO) from Rhodotorula gracilis, were adsorbed on such matrices in a few minutes at pH 7.0 and 4 degrees C. Immobilized enzymes preserved 100% of catalytic activity and remained fully immobilized in 0.2 M NaCl. In addition to that, CRL and DAAO were highly stabilized upon immobilization. Stabilization of DAAO, a dimeric enzyme, seems to be due to the involvement of both enzyme subunits in the ionic adsorption.  相似文献   

4.
Protein A from Staphylococcus aureus (SpA) is a receptor for the Fc domain of several classes of antibodies including immunoglobin G (IgG). A hybrid protein consisting of protein A and the enzyme beta-lactamase has been constructed using recombinant DNA techniques. The functional characteristics of the hybrid protein adsorbed on IgG-coated Sepharose matrices were studied in detail and compared to those of (i) the hybrid protein in solution and (ii) beta-lactamase covalently immobilized on CNBr-activated Sepharose. Protein A--beta-lactamase bound tightly and specifically to IgG-Sepharose and could be stored for at least 4 weeks without dissociation. The rate of penicillin G hydrolysis by the beta-lactamase domain of the immobilized hybrid protein was found to depend on the amount of IgG covalently coupled to the support. For all IgG loads, higher specific activities and lower Km values relative to covalently immobilized beta-lactamase were obtained. Adsorption of the hybrid protein on the support resulted in increased stability to thermal deactivation. These results indicate that bifunctional hybrid proteins can be useful for the affinity immobilization of enzymes.  相似文献   

5.
Nanoporous materials with different pore sizes are evaluated as immobilization and stabilization matrices of proteins for the development of highly stable biosensors. It has been proven experimentally that confinement of proteins in cages with a diameter that is 2-6 times larger than their size increases considerably the stability of the biomolecules, as has been shown earlier by theoretical calculations. Porous silica beads with pore sizes of 10nm were utilized for the immobilization of the enzymes HRP and GOx with diameters in the order of 5 and 7 nm, respectively. The sensitivity of the corresponding biosensor systems was monitored for 70 h under continuous operation conditions (+600 mV) and it was found that the stabilization factor of GOx is 1.7 times higher compared to HRP. Also the stabilization efficiency of enzymes against leaching and inactivation in porous polymer beads with pore diameters of 10 and 30 nm was examined. The leaching rate of the enzyme AChE from the 30 nm polymer beads was found to be 1.1 times higher than that from the 10nm beads. At the same time the remaining activity of GOx biosensors after 5 days of continuous operation conditions (+600 mV) was found to be 2.1 times higher when the enzyme had been immobilized in the 10nm beads compared to the 30 nm beads. It is thus evident that the matching between the pore size of nanoporous materials and the molecular size of enzymes is essential for the development of biosensors with extended shelf and operational lifetimes.  相似文献   

6.
A simple technique for the isolation of very high molecular weight genomic DNA from animal tissues and cells is described. The method involves rapid isolation of nuclei and their embedding in agarose beads followed by extraction of lipids and proteins with SDS. The protocol does not require proteolytic digestion and the whole procedure can be completed in 1 day. The isolated DNA is digestible by restriction enzymes and free of ligase inhibitors.  相似文献   

7.
Phenol and its derivatives are widespread contaminants whose sources are both natural and industrial. Phenol is massively produced and used as a starting material for synthetic polymers and fibers. Although phenolic compounds play important biochemical and physiological roles in living systems, their accumulation in the environment as a result of intensive human activity may result in drastic ecological problem. Various analytical techniques are available for the detection of phenol in environmental samples. But they need complex sample pre-treatment so as are time consuming, costly and use heavy devices. On the other hand a biosensor is a device that gives rapid detection, cost effective and easy. A review study was carried out to accumulate the possible biosensors for the detection of phenolic compounds in environmental samples. A number of biological components including microorganisms, enzymes, antibodies, antigens, nucleic acids etc. can be used for the construction of biosensors that was found to detect phenolic compounds. Of all type of biological components microorganisms and enzymes are mostly used. The microorganisms are Pseudomonas, Moraxella, Arthrobacter, Rhodococcus, and Trichosporon. The most used enzymes are tyrosinase, peroxidase, laccase, glucose dehydrogenase, cellobiose dehydrogenase etc. Antibody sensors can detect a very trace level. The biorecognition of DNA biosensors occur by hybridization of DNA. Biosensors are found to work well when the biological sensing element is immobilized. A variety of immobilization techniques were found to use as adsorption, covalent binding, entrapment, cross-linking etc. For immobilization the matrices used was polyvinyl alcohol, Osmium complex, nafion/sol?Cgel silicate, chitosan, silica gel etc.  相似文献   

8.
Oriented versus random protein immobilization   总被引:1,自引:0,他引:1  
Immobilization of proteins on solid surfaces plays an important role in all the fields of modern biology. Two approaches are used in the immobilization of proteins: a random and an oriented mode of binding to solid matrices. In this note, we show that there is not much difference in using either mode of immobilization, since proteins usually bind to a matrix through only one or two bonds. This is demonstrated by the attachment of several proteins to CNBr-activated Sepharose through their lysines and the consequent conversion of those lysines to homoarginine upon treatment with ammonium hydroxide.  相似文献   

9.
The advantages of oriented immobilization of biologically active proteins are good steric accessibilities of active binding sites and increased stability. This not only may help to increase the production of preparative procedures but is likely to promote current knowledge about how the living cells or tissues operate. Protein inactivation starts with the unfolding of the protein molecule by the contact of water with hydrophobic clusters located on the surface of protein molecules, which results in ice-like water structure. Reduction of the nonpolar surface area by the formation of a suitable biospecifc complex or by use of carbohydrate moieties thus may stabilize proteins. This review discusses oriented immobilization of antibodies by use of immobilized protein A or G. The section about oriented immobilization of proteins by use of their suitable antibodies covers immobilization of enzymes utilizing their adsorption on suitable immunosorbents prepared using monoclonal or polyclonal antibodies, preparation of bioaffinity adsorbent for the isolation of concanavalin A and immobilization of antibodies by use of antimouse immunoglobulin G, Fc-specific (i.e. specific towards the constant region of the molecule). In the further section immobilization of antibodies and enzymes through their carbohydrate moieties is described. Oriented immobilization of proteins can be also based on the use of boronate affinity gel or immobilized metal ion affinity chromatography technique. Biotin–avidin or streptavidin techniques are mostly used methods for oriented immobilization. Site-specific attachment of proteins to the surface of solid supports can be also achieved by enzyme, e.g., subtilisin, after introduction a single cysteine residue by site-directed mutagenesis.  相似文献   

10.
Different methods for the immobilization of proteins (enzymes and immunoglobulins) on liposomes are reviewed. These methods include adsorption, incorporation, covalent binding and binding of preliminarily modified proteins with the liposomal surface. Literature data are compared, optimal immobilization conditions are discussed and requirements for the immobilization processes are formulated. The possibility of using liposome-protein conjugates for drug targeting is especially discussed.  相似文献   

11.
酶的本质是一种具有催化功能的蛋白质,能影响化学反应。然而,与传统的天然酶分子比较,固化酶相对更为脆弱,而传统的有机或无机催化剂其活性则比较固定。固化酶对于优化产业生产过程非常重要,近几十年来已开发出多种新型固化酶。本文在回顾酶固定化技术最新发展的同时。着重将其最新技术分别从吸附于载体,诱惑侦查及交联等三个方面进行综述。  相似文献   

12.
酶的本质是一种具有催化功能的蛋白质,能影响化学反应。然而,与传统的天然酶分子比较,固化酶相对更为脆弱,而传统的有机或无机催化剂其活性则比较固定。固化酶对于优化产业生产过程非常重要,近几十年来已开发出多种新型固化酶。本文在回顾酶固定化技术最新发展的同时。着重将其最新技术分别从吸附于载体,诱惑侦查及交联等三个方面进行综述。  相似文献   

13.
Nuclear matrices were isolated from plasmodia of a true slime mold, Physarum polycephalum, and the DNA synthetic activity in vitro was examined. These matrices isolated in S-phase catalyzed DNA synthesis requiring Mg2+, deoxyribonucleoside 5'-triphosphates and ATP, without exogenous templates. The activity changed during S-phase with the rate of in vivo DNA replication. Product analysis by gel electrophoresis revealed that the matrices produced Okazaki fragments. These results suggest that DNA synthesis partially reflects in vivo DNA replication. DNA synthesis was sensitive to aphidicolin, heparin and N-ethylmaleimide, indicating involvement of the alpha-like DNA polymerase of Physarum. Exogenous addition of activated DNA stimulated DNA synthesis 4-10-fold and suggested that only some of the existing enzymes are involved in endogenous DNA synthesis. Matrices isolated in G2-phase were also associated with a similar DNA synthetic activity, but they did not produce Okazaki fragments in vitro. It is, therefore, concluded that nuclear matrices are associated with alpha-like DNA polymerase throughout the cell cycle, and that some of the enzymes participate in in vivo DNA replication in S-phase; thus, DNA replication is possibly controlled by this process. The relationship between DNA synthetic activities by the isolated nuclei and matrices was also discussed.  相似文献   

14.
Many different micro and nano sized materials have been used for enzymes immobilization in order to increase their catalytic activity and stability. Generally, immobilized enzymes with conventional immobilization techniques exhibit improved stability while their activity is lowered compared to free enzymes. Recently, an elegant immobilization approach was discovered in synthesis of flower-like organic-inorganic hybrid nanostructures with extraordinary catalytic activity and stability. In this novel immobilization strategy, proteins (enzymes) and metal ions acted as organic and inorganic components, respectively to form hybrid nanoflowers (hNFs). It is demonstrated that the hNFs highly enhanced catalytic activities and stability in a wide range of experimental conditions (pHs, temperatures and salt concentration, etc.) compared to free and conventionally immobilized enzymes. This review mainly discussed the synthesis, characterization, development and applications of organic-inorganic hybrid nanoflowers formed of various enzymes and metal ions and explained potential mechanism underlying enhanced catalytic activity and stability.  相似文献   

15.
The search for optimal variants of restriction endonucleases immobilization was begun recently. For some enzymes immobilization was successful due to the presence of covalent bonds on CNBr-sepharose (EcoRI, BamHI, HindIII, TaqI, PaeI, SalI, PvuII). For the enzymes EcoRI, BamHI and HindIII it was due to hydrophobic interaction with triethyl-agarose (triethyl-triphenylmethane). The high yield (up to 80%) of enzymatic activity has been obtained for small number of restriction endonucleases. In the experiments of several amino acid residues modification and immobilization of restriction endonucleases the participation of lysine, arginine, glutamic acid and SH- or S-S-groups in the catalysis and (or) binding of these enzymes with DNA has been shown. The restriction endonucleases immobilization experiments and research of enzymes active centre enrich each other and are very interesting for their use in molecular biology and deepening our knowledge of protein-nucleic interactions.  相似文献   

16.
The pentacyclic hopanoids, a class of eubacterial lipids, are synthesized by squalene-hopene cyclase and side chain-elongating enzymes. With the aid of DNA probes based on the amino-terminal sequence of purified squalene-hopene cyclase from Bacillus acidocaldarius, clones of Escherichia coli that express this enzyme in the cytoplasmic membrane were isolated. According to the DNA sequence, the cyclase contained 627 amino acids with a molecular mass of 69,473 Da. A high percentage of the amino acids were basic. No significant similarity to existing sequenced proteins was found.  相似文献   

17.
酵母表面展示酶技术   总被引:1,自引:0,他引:1  
酵母表面工程是利用载体蛋白将外源蛋白以活性形式锚定于酵母细胞外表面,免去了外源蛋白的纯化和固定,并且对其有稳定作用。本文综述了酵母表面展示技术的原理、步骤、优点以及目前常见的酵母表面展示酶,如淀粉水解酶、纤维素水解酶、与木糖利用相关的酶、脂肪酶、有机磷水解酶的构建及应用。  相似文献   

18.
Abstract

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.

Communicated by Ramasamy H. Sarma  相似文献   

19.
Data available in literature concerning pH-dependence of immobilization of certain proteins are analyzed. A conclusion is drawn that an optimal pH of the enzyme binding with the matrix surface is determined by properties of the enzymes themselves rather than by the matrix origin. Linear dependence between the pH-optimum of immobilization and the value of their isoelectric points is shown on 19 proteins.  相似文献   

20.
In this communication we report the effects of general anesthetics on the mobility and order of spin labeled stearic acid derivatives in synaptic membranes and in bilayers formed from the lipids extracted therefrom. The anesthetics studied abolish the immobilization induced by synaptic membrane proteins on the membrane lipids : this effect, observed particularly in the bilayer core, is interpreted as a labilization of lipid-protein interactions induced by anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号