首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Zambou  C. G. Spyropoulos 《Planta》1989,179(3):403-408
The uptake of D-mannose was studied in detached cotyledons of germinated fenugreek (Trigonella foenum-graecum L.) seeds. Uptake kinetics indicate the involvement of two components, a saturable component operating at low concentrations and a diffusion-like one at high concentrations. Treatment of cotyledons with carbonyl-cyanide-m-chlorophenylhydrazone and p-chloromercuribenzenesulfonic acid reduced D-mannose-uptake rates by about 35% and 35–65%, respectively. No difference in the uptake rates was observed in the presence of D-galactose or 3-O-methylglucose. D-Mannose uptake was not very much affected by pH. The optimum pH for its uptake was 6.5 while at pH 8.5 its uptake was reduced by 22%. D-Mannose addition to fenugreek cotyledons did not induce alkalinization of the medium. Furthermore, low turgor, which enhances proton/sugar cotransport, decreased D-mannose uptake while the uptake of 3-O-methylglucose was increased. The rate of D-mannose uptake by fenugreek cotyledons depended on the hours of imbibition. These changes of uptake were not followed by analogous changes in the turgor pressure (p) of fenugreek cotyledons, which remained fairly constant. Results indicate that D-mannose is partially taken up by a carrier which has high specificity for D-mannose, but not by a H+-sugar cotransport system. It is further concluded that the carrier plays an important role in switching on and off the uptake capacity of fenugreek cotyledons during seedling development.Abbreviations and symbols CCCP carbonylcyanide-m-chlorophenylhydrazone - DTT dithiothreitol - 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzensulfonic acid - water potential - s osmotic potential - p turgor pressure  相似文献   

2.
P. Gross  T. ap Rees 《Planta》1986,167(1):140-145
The aim of this work was to see if amyloplasts contained inorganic pyrophosphatase. Alkaline pyrophosphatase activity, largely dependant upon MgCl2 but not affected by 100 M ammonium molybdate or 60–100 mM KCl, was demonstrated in exracts of developing and mature clubs of the spadix of Arum maculatum L. and of suspension cultures of Glycine max L., but not in extracts of the developing bulb of Allium cepa L. The maximum catalytic activity of alkaline pyrophosphatase in the above tissues showed a positive correlation with starch synthesis, and in the first two tissues was shown to exceed the activity of ADPglucose pyrophosphorylase. Of the alkaline pyrophosphatase activity in lysates of protoplasts of suspension cultures of Glycine max, 57% was latent. Density-gradient centrifugation of these lysates showed a close correlation between the distribution of alkaline pyrophosphatase and the plastid marker, nitrite reductase. It is suggested that much, if not all, of the alkaline pyrophosphatase in suspension cultures of Glycine max is located in the plastids.Abbreviations PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate  相似文献   

3.
Allium cepa L. leaves were subjected to enzymatic (pectolyase) and mechanical manipulation in order to ascertain the contribution made by various leaf tissues to the total sugar uptake by the leaf. In order to develop an understanding of the basic anatomy and ultrastructure of the Allium leaf and assess the integrity of the tissue before and after enzymatic and mechanical manipulation, a light- and transmission-electron-microscopy study was performed. One outcome of this study was the discovery that the chloroplasts of the bundle-sheath cells contain starch. The function of these inclusions in relation to carbohydrate pools and translocation is discussed. Kinetic curves for sucrose and fructose uptake by leaf discs derived from control and modified leaves are presented. In addition, kinetic curves for the tissues removed by the enzymatic treatment (inner parenchyma, bundle sheath and some vascular parenchyma) and the vascular bundles were also obtained. All tissues exhibited the same linear plus saturable profile as the dicotyledon, Beta vulgaris, with the exception of fructose uptake into the inner parenchyma and bundle-sheath cells; in this case the response was linear. The effect of anoxia on uptake of exogenous sucrose was also investigated. Anaerobiosis inhibited both the linear and saturable component of sucrose influx. Adenine-nucleotide levels were obtained using high-performance liquid chromatography for control (air) and anoxia-treated (N2) leaf discs. A general loss of adenine nucleotides was observed. The results presented indicate that all tissues of the leaf retrieve exogenous sugar such that the kinetic curves derived from leaf discs cannot represent phloem loading, per se.Abbreviations Mes 2-(N-morpholino)ethanesulfonic acid - E.C. energy charge  相似文献   

4.
Uptake of glucose, 3-O-methylglucose and sucrose into beetroot protoplasts is considerably stimulated by 10–6M fusicoccin. This effect is decreased in the presence of 10mM Na+ or K+, 2 mM Mg2+ or Ca2+. Whereas fusicoccin causes no change in the pH-optimum of the sugar uptake (pH 5.0), the apparent Km of this uptake which obeys a biphasic kinetics is decreased by the action of fusicoccin. In the protoplast suspension, fusicoccin induces an acidification which is suppressed by uncoupling agents. Correspondingly, uncouplers as well as vanadate and diethylstilbestrol markedly inhibit the effect of fusicoccin on sugar uptake. The present data support the view that glucose uptake into beetroot protoplasts depend on the proton-pumping activity of the plasmalemma-ATPase. cis–Abscisic acid diminishes significantly the fusicoccin-enhanced glucose uptake. By using a radioimmunoassay, the internal abscisic acid content of the protoplast was estimated to be in the range of 10–6 M. Protoplasts isolated from bundle tissue contain twice as much abscisic acid as those derived from storage parenchyma. Because protoplasts from the bundle tissue were shown to take up sugars much faster than those from the storage cells, the observed effect of abscisic acid might reflect an involvement of this hormone in the regulation of carbohydrate partitioning in the beet.Abbreviations ABA cis–abscisic acid - bundle protoplast protoplasts isolated from the conducting tissue of beetroots - DES diethylstilbestrol - FC fusicoccin - 3-OMG 3-O-methylglucopyranose - PCMBS p–chloromercuribenzenesulfonic acid - storage protoplasts protoplasts isolated from storage parenchyma  相似文献   

5.
6.
Protoplasts isolated from beetroot tissue took up glucose preferentially whereas sucrose was transported more slowly. The 14C-label from [14C]glucose and [14C]sucrose taken up by the cells could be detected rapidly in phosphate esters and, after feeding of [14C]glucose was found also in sucrose. The temperature-dependent uptake process (activation energy EA about 50 kJ · mol–1) seems to be carrier mediated as indicated by its substrate saturation and, for glucose, by competition experiments which revealed positions C1, C5 and C6 of the D-glucose molecule as important for effective uptake. The apparent Km(20° C) for glucose (3-O-methylglucose) was about 1 mM whereas for sucrose a significantly lower apparent affinity was determined (Km about 10 mM). When higher concentrations of glucose (5 mM) or sucrose (20 mM) were administered, the uptake process followed first-order kinetics. Carrier-mediated transport was inhibited by N,N-dicyclohexylcarbodiimide, Na-orthovanadate, p–chloromercuribenzenesulfonic acid, and by uncouplers and ionophores. The uptake system exhibited a distinct pH optimum at pH 5.0. The results indicate that generation of a proton gradient is a prerequisite for sugar uptake across the plasma membrane. Protoplasts from the bundle regions in the hypocotyl take up glucose at higher rates than those derived from bundle-free regions. The results favour the idea that apoplastic transport of assimilates en route of unloading might be restricted to distinct areas within the storage organ (i.e. the bundle region) whereas distribution in the storage parenchyma is symplastic.Abbreviations CCCP Carbonylcyanide m–chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DOG deoxyglucose - Mes 2-(N-morpholino)ethanesulfonic acid - 3-OMG 3-O-methylglucose - PCMBS p–chloromercuribenzenesulfonic acid - SDS Sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

7.
Two experimental systems were developed to study the uptake of sucrose by the dermal transfer cells of developing cotyledons of Vicia faba L. First, the in-vivo state was approximated by short-term (10 min) incubation of whole cotyledons in [14C]sucrose solutions. Under these conditions, a minimum of 67% of the 14C label entered the dermal transfer cell complex. Of this, at least 40% crossed the plasma membranes of the epidermal transfer cells. Second, a protocol was developed to enzymatically isolate and purify dermal transfer cell protoplasts. The yields of the transfer cell protoplasts were relatively low and their preparation incurred a significant loss of plasma membrane. However, the protoplasts remained viable up to 24 h following purification and proved to be a suitable system to verify transport properties observed with whole cotyledons. Using these two experimental systems, it was established that [14C]sucrose uptake by the dermal transfer cells exhibited features consistent with mediated energy-dependent transport. This included saturation kinetics, competition for uptake between structurally similar molecules, and inhibition of uptake by p-chloromercuribenzenesulfonic acid and several other metabolic inhibitors. For comparative purposes, sugar uptake by the storage parenchyma of the Vicia cotyledons was also examined. In contrast to the dermal transfer cell complex, sucrose uptake by the storage parenchyma displayed characteristics consistent with simple diffusion.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - NEM N-ethylmaleimide - PCMBS p-chloromercuribenzenesulfonic acid The investigation was supported by funds from the Research Management Committee, the University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are indebted to Stella Savory for preparing the ultrathin sections for electron microscopy.  相似文献   

8.
Streptanthus tortuosus Kell. suspension cells will grow in a medium with sucrose as carbohydrate source. It was investigated whether the cells are able to take up sucrose or whether sucrose has to be hydrolyzed to glucose and fructose which eventually are taken up. The detailed quantitative analysis of sugar-uptake rates in the low concentration range up to 1 mM showed the following features: (i) There is definitely no sucrose-uptake system working in the low concentration range; any uptake of radioactivity from labelled sucrose proceeds via hydrolysis of sucrose by cell-wallbound invertase. (ii) Hexoses are taken up by two systems, a glucose-specific system with a K m of 45 M and a high V max for glucose and a K m of 6 mM and a low V max for fructose, and a fructosespecific system with a K m of 500 M and high a V max for fructose and a K m of 650 M and a low V max for glucose. (iii) There is a more than tenfold preference for uptake of the fructose derived from sucrose versus uptake of free fructose, with the result that the kinetic disadvantage of the fructoseuptake system compared to the glucose-uptake system is diminished if sucrose is supplied as the carbon source. It is speculated that invertase might work as an enzyme aiding in fructose transport.Abbreviations FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - FW fresh weight  相似文献   

9.
The interaction of fatty-acid synthesis with starch synthesis has been studied in intact amyloplasts isolated from floral buds of cauliflower (Brassica oleracea L.). These amyloplasts perform acetate-dependent fatty acid synthesis at maximum rates only at high external ATP concentrations. Neither pyruvate nor malate inhibit acetate-dependent fatty-acid synthesis. In contrast, acetate is inhibitory to the low pyruvate-dependent fatty acid synthesis. These observations indicate that neither pyruvate nor malate are used as natural precursors of fatty-acid synthesis. In contrast to fatty-acid synthesis, the rate of glucose-6-phosphate-dependent starch synthesis is already saturated in the presence of much lower ATP concentrations. Rising rates of starch synthesis influence negatively the process of acetate-dependent fatty acid synthesis. This inhibition appears to occur under both limiting and saturating concentrations of external ATP, indicating that the rate of ATP uptake is limiting when both biochemical pathways are active. The rate of starch synthesis is modulated specifically by the concentration of 3-phosphoglycerate in the incubation medium. This observation leads to the conclusion that the activity of ADP-glucose pyrophosphorylase is of primary importance for the control of both, starch and fatty-acid synthesis. Using the modified approach of Kacser and Burns (1973; Symp. Soc. Exp. Biol.27, 65–104) we have quantified the contribution of the rate of starch synthesis to the control of the metabolic flux through fatty-acid synthesis.Abbreviations ADPGlc-PPase ADPglucose pyrophosphorylase - Glc6P glucose-6-phosphate - PGA 3-phosphoglyceric acid  相似文献   

10.
After removal of the lower epidermis, leaf discs ofVicia faba L. were loaded with either [14C]sucrose or [3H]3-O-methylglucose (3-O-MeG). The exit of preloaded sucrose was strongly stimulated when sucrose was present in the bathing medium, and the exit of 3-O-MeG was also markedly increased in the presence of 3-O-MeG. This specific stimulation exhibited single saturation dependence on the external concentration of sugar (K m=9 mM for sucrose, 5 mM for 3-O-MeG), and was sensitive to low temperature, uncouplers and thiol reagents. Sucrose exit was never affected by 3-O-MeG in the bathing medium. Sucrose did not affect the exit of 3-O-MeG in fresh discs, but promoted this exit in discs previously aged for 12 h, indicating partial external hydrolysis of sucrose in the latter tissues. Ageing also dramatically increased the exit of 3-O-MeG induced by 3-O-MeG but had no effect on the exit of sucrose induced by sucrose. The ability of 53 compounds (pentoses, hexoses, hexose-phosphates, polyols, di- and trisaccharides, phenyl- and nitrophenyl-derivatives, sweeteners) to interact with the sucrose carrier and with the hexose carrier was tested. Sucrose, maltose, -phenylglucoside andp-nitrophenyl--glucoside interacted with the sucrose carrier.d-glucose,d-xylose,d-fucose,d-galactose,d-mannose, 3-O-MeG and 2-deoxyglucose interacted with the hexose carrier.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - 3-O-MeG 3-O-methylglucose - PCMBS p-chloromercuribenzenesulphonic acid  相似文献   

11.
12.
Labelling experiments in which high-specific-activity [U-14C]sucrose or [U-14C]hexoses were injected into potato (Solanum tuberosum L. cv. Desiree) tubers showed that within 1 d of detaching growing tubers from their mother plant, there is an inhibition of starch synthesis, a stimulation of the synthesis of other major cell components, and rapid resynthesis of sucrose. This is accompanied by a general increase in phosphorylated intermediates, an increase in UDP-glucose, and a dramatic decrease of ADP-glucose. No significant decline in the extracted activity of enzymes for sucrose degradation or synthesis, or starch synthesis is seen within 1 d, nor is there a significant decrease in sucrose, amino acids, or fresh weight. Over the next 7 d, soluble carbohydrates decline. This is accompanied by a decline in sucrose-synthase activity, hexose-phosphate levels, and the synthesis of structural cell components. It is argued that a previously unknown mechanism acting at ADP-glucose pyrophosphorylase allows sucrose-starch interconversions to be regulated independently of the use of sucrose for cell growth.  相似文献   

13.
J. Eliezer  D. A. Morris 《Planta》1979,147(3):216-224
The velocity and intensity of basipetal transport of 14C-labelled indol-3yl-acetic acid (IAA) applied to the apical bud of the intact pea plant were influenced by the temperature to which the stem was exposed and were not influenced by changes in the temperature of the root system when this was controlled independently between 5°C and 35°C. The velocity of transport increased steadily with temperature to a maximum in excess of 35°C and then fell sharply with further increase in temperature. The Q10 for velocity, determined from Arrhenius plots, was low (ca. 1.3). Transport intensity increased to a maximum at about 25°C (Q10=2.2) and then declined gradually with further increase in temperature. It is suggested that transport velocity and transport intensity are controlled independently.The characteristics of auxin transport through the stem were not affected by removal of the root system, or by the withdrawl of root aeration. Labelled IAA did not pass a region of the stem cooled to about 1.0°C, or through a narrow zone of stem tissue killed by heat treatment. In the latter case the heat treatment was shown not to interfere with the upward transport of water in the xylem. Labelled IAA continued to move into, and to accumulate in, the tissues immediately above a cooled or heat-killed region of the stem. It was concluded that the long-distance basipetal transport of auxin through the stem of the intact plant is driven by the transporting cells themselves and is independent of the activity of sinks for the transported auxin.The fronts of the observed tracer profiles in the stem were closely fitted by error function diffusion analogue curves. However, diffusion of IAA alone could not account for the observed characteristics of the transport and it is suggested that the curvilinear fronts of the profiles resulted from a diffusive mixing of exogenous IAA (or IAA-carrier complexes) with endogenous IAA already in the transport pathway.Abbreviations IAA indol-3yl-acetic acid - IAAsp indol-3yl-acetyl aspartic acid - CFM methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin) - TIBA 2,3,5-triiodobenzoic acid - ABA abscisic acid  相似文献   

14.
Geert Jan de Klerk 《Planta》1981,153(6):524-529
Isolated embryos are more suitable for in vivo study of protein synthesis than non-isolated embryos because, after isolation, the uptake of labeled amino acids is about 1000 times higher. However, isolation also stimulates protein synthesis: Up to 4 h after isolation, the capacity to incorporate labeled amino acids increased 7 times. Therefore, data on incorporation obtained with isolated embryos cannot be extended to non-isolated embryos. The increase of protein synthesis was not due to synthesis of specific proteins, but was a general increase. Furthermore, ripening, dormant, and afterripened embryos showed the same degree of increase. Isolation therefore stimulates protein synthesis nonspecifically. When embryos were kept under anaerobic conditions after isolation, protein synthesis did not increase. Therefore, higher oxygen consumption after removal of the seedcoat is probably the cause of the higher incorporation capacity. Furthermore, the activation of protein synthesis lagged several hours behind the increase of oxygen consumption.Abbreviations A afterripened - D dormant - pre-rRNA precursor of ribosomal RNA  相似文献   

15.
The aim of this work was to determine in what form carbon destined for starch synthesis crosses the membranes of plastids in developing pea (Pisum sativum L.) embryos. Plastids were isolated mechanically and incubated in the presence of ATP with the following 14C-labelled substrates: glucose, fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate. Glucose 6-phosphate was the only substrate that supported physiologically relevant rates of starch synthesis. Incorporation of label from glucose 6-phosphate into starch was dependent upon the integrity of the plastids and the presence of ATP. The rate of incorporation approached saturation at a glucose 6-phosphate concentration of less than 1 mM. It is argued that glucose 6-phosphate is likely to enter the plastid as the source of carbon for starch synthesis in vivo.Abbreviations ADPG PPase ADP-glucose pyrophosphorylase - DHAP dihydroxyacetone phosphate  相似文献   

16.
The effect of increasing concentrations of Al2(SO4)3 in situ on the content of starch, sugars and activity behaviour of enzymes related to their metabolism were studied in growing seedlings of two rice cvs. Malviya-36 and Pant-12 in sand cultures. Al2(SO4)3 levels of 80 and 160 μM in the growth medium caused an increase in the contents of starch, total sugars as well as reducing sugars in roots as well as shoots of the rice seedlings during a 5–20 days growth period. The activities of the enzymes of starch hydrolysis α-amylase, β-amylase and starch phosphorylase declined in Al-exposed seedlings, whereas the activities of sucrose hydrolyzing enzymes sucrose synthase and acid invertase increased in the seedlings due to Al3+ treatment. The enzyme of sucrose synthesis, sucrose phosphate synthase showed decreased activity in Al3+ treated seedlings compared to controls. Results suggest that Al3+ toxicity in rice seedlings impairs the metabolism of starch and sugars and favours the accumulation of hexoses by enhancing the activities of sucrose hydrolyzing enzymes.  相似文献   

17.
Sucrose uptake and partitioning in potato (Solanum tuberosum L.) tuber discs were examined under a range of mannitol and ethylene-glycol concentrations. Mannitol caused the same changes in turgor over a wide range of incubation periods (90 min-6 h), indicating that it did not penetrate the tissue. In comparison, ethylene glycol reduced turgor losses but did not eliminate them, even after 6 h. Between 100 mM and 300 mM mannitol, turgor fell by 350 kPa, compared with 35 kPa in ethylene glycol. Uptake experiments in mannitol alone showed that total sucrose uptake was strongly correlated with both osmotic potential and with turgor potential. In subsequent experiments sucrose uptake and partitioning were examined after 3 h equilibration in 100 mM and 300 mM concentrations of mannitol and ethylene glycol. Total sucrose uptake and the conversion of sucrose to starch were enhanced greatly only at 300 mM mannitol, indicating an effect of turgor, rather than osmotic potential on sucrose partitioning. The inhibitors p-chloromercuribenzenesulfonic acid and carbonylcyanide m-chlorophenylhydrazone (CCCP) both reduced sucrose uptake, but in quite different ways. p-Chloromercuribenzenesulfonic acid reduced total sucrose uptake but did not affect the partitioning of sucrose to starch. By contrast, CCCP inhibited total uptake and virtually eliminated the conversion of sucrose to starch. Despite this, sucrose uptake in the presence of CCCP continued to increase as the mannitol concentration increased, indicating an increase in passive transport at higher mannitol concentrations. Increased sucrose uptake above 400 mM mannitol was shown to be the result of uptake into the free space. The data show that starch synthesis is optimised at low but positive turgors and the relation between sucrose partitioning and the changing diurnal water relations of the tuber are discussed.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

18.
Rae AL  Perroux JM  Grof CP 《Planta》2005,220(6):817-825
A transporter with homology to the SUT/SUC family of plant sucrose transporters was isolated from a sugarcane (Saccharum hybrid) stem cDNA library. The gene, designated ShSUT1, encodes a protein of 517 amino acids, including 12 predicted membrane-spanning domains and a large central cytoplasmic loop. ShSUT1 was demonstrated to be a functional sucrose transporter by expression in yeast. The estimated Km for sucrose of the ShSUT1 transporter was 2 mM at pH 5.5. ShSUT1 was expressed predominantly in mature leaves of sugarcane that were exporting sucrose and in stem internodes that were actively accumulating sucrose. Immunolocalization with a ShSUT1-specific antiserum identified the protein in cells at the periphery of the vascular bundles in the stem. These cells became lignified and suberized as stem development proceeded, forming a barrier to apoplasmic solute movement. However, the movement of the tracer dye, carboxyfluorescein from phloem to storage parenchyma cells suggested that symplasmic connections are present. ShSUT1 may have a role in partitioning of sucrose between the vascular tissue and sites of storage in the parenchyma cells of sugarcane stem internodes.  相似文献   

19.
The uptake of sucrose into isolated discs cut from sink (growing) and source (sprouting) potato (Solanum tuberosum L.) tuber tissue was studied. The uptake of sucrose into sink-tuber discs demonstrated biphasic kinetics. The large saturable component was inhibited by incubation of the discs with p-chloromercuribenzene sulfonic acid (PCMBS) whilst both the saturable and linear components were inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP). By contrast, in source-tuber discs, the linear component represented the majority of sucrose taken up, the saturable component playing only a minor role. In source discs, only the saturable component of uptake was inhibited by either PCMBS or CCCP. A large proportion (up to 25%) of sucrose taken up into sink-tuber discs was converted to starch but as the tubers aged the proportion of sucrose converted to starch decreased to the level found in source-tuber discs (approx. 3%). By contrast with sink-tuber discs (see Oparka and Wright, 1988b, Planta 175, 520–526) sucrose uptake into source discs was insensitive to turgor and demonstrated an uptake pattern similar to that of CCCP-treated sink tissue. It is proposed that exogenous sucrose is taken into the storage parenchyma of sink-tuber discs by both a carrier-mediated and a diffusional process. By contrast, uptake into the storage parenchyma of source-tuber discs appears to be essentially diffusional. The turgor sensitivity of sucrose uptake into sink-tissue discs may be mediated via the plasmalemma H+-ATPase. As the tuber ages the sucrose-uptake activity decreases and the capacity of the storage parenchyma to synthesise starch is lost. The data are discussed in relation to the in-vivo mechanisms of sucrose transport in storage tissues.  相似文献   

20.
The nature of the starch-synthesising plastids in developing pea (Pisum sativum L.) embryos has been investigated. Chlorophyll and starch were distributed throughout the cotyledon during development. Chlorophyll content increased initially, then showed little change up to the point of drying out of the embryo. Starch content per embryo increased dramatically throughout development. The chlorophyll content per unit volume was highest on the outer edge of the cotyledon, while the starch content was highest on inner face. Nycodenz gradients, which fractionated mechanically-prepared plastids according to their starch content, failed to achieve any significant separation of plastids rich in starch and ADP-glucose pyrophosphorylase from those rich in chlorophyll and a Calvin-cycle marker enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase. However, material that was not sufficiently dense to enter the gradients was enriched in activity of the Calvin-cycle marker enzyme relative to that of ADP-glucose pyrophosphorylase. Nomarski and epi-fluorescence microscopy showed that intact, isolated plastids, including those with very large starch grains, invariably contained chlorophyll in stromal structures peripheral to the starch grain. We suggest that the starch-storing plastids of developing pea embryos are derived directly from chloroplasts, and retain chloroplast-like characteristics throughout their development. Developing pea embryos also contain chloroplasts which store little or no starch. These are probably located primarily on the outer edge of the cotyledons where there is sufficient light for photosynthesis at some stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号