首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression and function of Fc gamma RII and Fc gamma RIII on three mouse mast cell populations that differ in maturity as assessed by secretory granule constituents were analyzed by cellular and immunochemical approaches. As quantified by flow cytometric analysis of the binding of the rat 2.4G2 anti-Fc gamma RII/III mAb, mouse serosal mast cells (SMC) purified from the peritoneal cavity expressed more receptors per cell than did mouse IL-3-dependent, bone marrow culture-derived mast cells (BMMC), which are progenitors of SMC. Coculture of BMMC with mouse 3T3 fibroblasts for 2 wk, which alters the secretory granule composition toward that of SMC, also increased receptor epitope expression to a level equivalent to that of SMC. As assessed by rosette assays with mouse mAb to SRBC, all three mast cell populations bound IgG1, IgG2a, and IgG2b, essentially all binding was inhibited by 2.4G2 antibody, and greater quantities of the antibody were required to block immune adherence by cocultured mast cells and SMC as compared with BMMC. Immunoprecipitation and SDS-PAGE analysis of Fc gamma RII and Fc gamma RIII from BMMC, cocultured mast cells, and SMC that were surface radiolabeled with Na125I revealed predominant native forms of 62, 57, and 56 kDa, respectively, and an additional surface form of 43 kDa in SMC. Removal of N-linked carbohydrate from immunoprecipitates demonstrated that BMMC expressed peptide cores of 38 kDa (Fc gamma RII-1 gene product) and 31 kDa (Fc gamma RII-2 gene product), and barely detectable amounts of a 28-kDa (Fc gamma RIII gene product) core. The expression of all three was increased by coculture with 3T3 fibroblasts, consistent with the increased expression of their common epitope by cytofluorographic analysis. SMC expressed primarily the Fc gamma RII-1 and some Fc gamma RIII gene product. Thus, the three populations of mast cells express different amounts and ratios of the Fc gamma RII and Fc gamma RIII gene products, and maturation of BMMC during coculture with fibroblasts in vitro and in the peritoneal cavity in vivo augments cell-surface expression of the receptors and immune adherence function.  相似文献   

2.
Human Fc gamma RIII (CD16), a low-affinity receptor expressed on several different cell types, has a polymorphism on polymorphonuclear cells (Fc gamma RIIIPMN) identified by the NA1 and NA2 markers. Inasmuch as this polymorphism has functional consequences, an understanding of the structural biology of Fc gamma RIII may provide important insight into receptor function. We analyzed Fc gamma RIIIPMN by SDS-PAGE and found that receptor from individuals allotyped for either NA1 or NA2 contained only one protein after removal of N-linked glycosylations (19 and 21 kDa respectively) whereas receptor from NA1/2 individuals contained both bands. Because some reports indicate that digestion of Fc gamma RIII on NK cells (Fc gamma RIIINK) with N-glycanase also results in two bands on SDS-PAGE, we investigated Fc gamma RIIINK to explore the possibility of a corresponding allelic polymorphism in this receptor. Contrary to expectation, Fc gamma RIIINK from all donors irrespective of their NA allotype contained two bands (20 and 24 kDa) on SDS-PAGE after deglycosylation. In addition, those distinct epitopes on the extracellular domain of Fc gamma RIIIPMN found with mAb B73.1 and CLB gran 11 in association with the NA allotypic differences are expressed (or not expressed) on Fc gamma RIIINK independent of donor NA allotype. Fc gamma RIIIPMN and Fc gamma RIIINK differ at the protein level as they have different m.w. (glycosylated and deglycosylated), different epitopes in the extracellular domain (not attributable to tissue-specific glycosylation), and differential expression of the NA allelic protein polymorphism. Although the membrane anchor of Fc gamma RIIIPMN is a phosphatidylinositol-specific phospholipase C sensitive glycosyl-phosphatidylinositol linkage, Fc gamma RIIINK is insensitive to phosphatidylinositol-specific phospholipase C. However, a form of Fc gamma RIIINK is released from NK cells upon incubation at 37 degrees C. Thus, the basis for the two bands in Fc gamma RIIINK after N-linked deglycosylation is neither coexpression of two molecular isoforms with different membrane anchors nor an identifiable allelic polymorphism in m.w. restricted to Fc gamma RIIINK (p less than 10(-6)). The differences between the two receptors indicate that, independent of cell anchor type, PMN and mononuclear cells must have different molecular isoforms. The allelic variants, different isoforms, alternative anchor mechanisms and release processes provide for an extensive genetic and regulatory diversity in Fc gamma RIII function.  相似文献   

3.
We have previously shown that the mono [125I]iodinated vasoactive intestinal peptide (125I-VIP) could be covalently cross-linked on intact colonic adenocarcinoma cells (HT29). A major Mr 67,000 and a minor Mr 120,000 cross-linked polypeptides have been characterized [Muller, Luis, Fantini, Abadie, Giannellini, Marvaldi & Pichon (1985) Eur. J. Biochem. 151, 411-417]. The glycoprotein nature of these species was investigated using endo-beta-acetylglucosaminidase F (Endo F) treatment, enzymic and chemical desialylation and wheat germ agglutinin (WGA)-Sepharose affinity chromatography. Affinity-labelled VIP-binding proteins solubilized by Nonidet P-40 bound to WGA-Sepharose and could be eluted specifically with N-acetyl-D-glucosamine. Treatment with Endo F resulted in an increased electrophoretic mobility of both polypeptides. The major and the minor VIP-binding proteins were converted respectively into Mr 47,000 and 100,000 species, indicating removal of 20 kDa of N-linked oligosaccharides. Deglycosylation with trifluoromethanesulphonic acid also led to a 20 kDa loss in mass of the Mr 67,000 component, indicating the absence of additional O-linked sugars on this polypeptide. The presence of sialic acid on the major VIP-binding protein was demonstrated after treatment of intact cells with neuraminidase or by chemical desialylation with hydrochloric acid. We conclude from this study that the VIP receptor from intact HT29-D4 cells is a glycoprotein with N-linked oligosaccharide side chains containing sialic acid.  相似文献   

4.
Formyl peptide chemotactic receptors affinity-labeled with N-formyl-Nle-Leu-Phe-Nle-[125I]iodo-Tyr-Lys (where Nle represents norleucine) and ethylene glycol bis(succinimidyl succinate) consist of two isoelectric forms with cell type differences in both apparent size and charge (neutrophils: 55-70 kDa, pI 5.8, and 6.2.; monocytes: 60-75 kDa, pI 5.6 and 6.0; differentiated HL-60 cells: 62-85 kDa, pI 5.6 and 6.0). Endo-beta-N-acetylglucosaminidase F (endo F) cleavage of N-linked oligosaccharides from formyl peptide receptor generates 40-50- and 33-kDa products that can be affinity-labeled. Whereas both pI forms of this receptor from neutrophils are cleaved by endo F to 33-kDa final products, this cleavage does not eliminate pI differences. Tunicamycin decreases expression of formyl peptide receptor on differentiating HL-60 and causes a dose-dependent decrease in size of the major product seen after affinity labeling (0.5 micrograms/ml: 38-48 kDa; 2 micrograms/ml: 32 kDa). Thus, the formyl peptide receptor polypeptide backbone from all three cell types contains at least two N-linked oligosaccharide side chains which contribute to the cell type differences in Mr and are not required for ligand binding. Papain treatment of intact cells generates a membrane-bound formyl peptide receptor fragment that can be affinity-labeled and is of similar size (29-31 kDa) in all three cell types. Endo F treatment of the affinity-labeled papain fragment of formyl peptide receptor does not alter its size, suggesting that this fragment does not contain the N-linked oligosaccharide cleaved by endo F from intact receptor. The results indicate that at least two N-linked oligosaccharide chains are located on the distal 1-3-kDa portion of the receptor polypeptide backbone.  相似文献   

5.
Human seminal plasma (SP) has been shown to affect several immunologic reactions in vitro. This might be due in part to the presence of proteins that specifically bind the Fc domain of IgG. By using mAb Leu 11a, Leu 11b, Leu 11c, and 3G8 we showed that the Fc binding of SP is associated with a molecule that antigenically resembles Fc gamma RIII. This molecule manifests specific affinity for solid phase-coupled IgG-Fc, and appears not be be cell membrane-associated. When compared with serum or blood plasma, its highest concentration was found in SP. Western blot analysis of SP performed with mAb Leu 11a, Leu 11b, Leu 11c, and 3G8 showed distinct bands at approximately 70 and 35 kDa, which contrasts with the broad area of electrophoretic mobility reported for membrane-bound Fc gamma RIII. These molecules in SP could influence maternal immune responses to paternal Ag during fertilization and pregnancy.  相似文献   

6.
The structure of the CD38 molecule has been evaluated by one- and two-dimensional gel analysis and by enzymatic digestions. The source of the Ag was mainly membrane preparations obtained from MLC cells, from normal thymocytes, and from the plasmocytoma line LP-1. Membranes were solubilized in NP-40 and the extracts fractionated by immunoaffinity chromatography [using a specific anti-CD38 antibody (A10 mAb) covalently linked to Sepharose protein A]. The purified Ag migrated as a single chain of Mr = 45,000 not associated with beta 2-microglobulin. Two-dimensional IEF gel electrophoresis revealed five spots (isoelectric point (pI) range: 6.5 to 6.9). After neuraminidase treatment, the mobility of the five polypeptides shifted to a more basic pI. Endoglycosidase-H treatment reduced the Mr of CD38 by 20%, revealing a broader band centered at Mr = 36,000. Treatment of CD38 molecule with V8 Staphylococcus aureus protease yielded a single dominant band at Mr = 38,000 which was still reactive with A10 mAb. The CD38 molecular was trypsin-resistant in both denatured or native conditions. These results clearly show the glycoprotein nature of CD38 molecule, which includes 2 to 4 N-linked oligosaccharide chains containing sialic acid residues. Furthermore, the present data indicate that the CD38 molecule does not display an apparent biochemical polymorphism among the different CD38+ cells or lines.  相似文献   

7.
The gene encoding the rat glycosylation enzyme beta1-4-N-acetylglucosaminyltransferase III (GnTIII) was cloned and coexpressed in a recombinant production Chinese hamster ovary (CHO) cell line expressing a chimeric mouse/human anti-CD20 IgG1 antibody. The new cell lines expressed high levels of antibody and have growth kinetics similar to that of the parent. Relative QPCR showed the cell lines to express varying levels of mRNA. High-performance liquid chromatography (HPLC) analysis showed the enzyme to have added bisecting N-acetylglucosamine (GlcNAc) residues in most (48% to 71%) of the N-linked oligosaccharides isolated from antibody preparations purified from the cell lines. In an ADCC assay the new antibody preparations promoted killing of CD20-positive target cells at approximately 10- to 20-fold lower concentrations than the parent. This activity was blocked using an anti-Fc gamma RIII antibody, supporting the role of Fc gamma RIII binding in this increase. In addition, cell binding assays showed the modified antibody bound better to Fc gamma RIII-expressing cells. The increase in ADCC activity is therefore likely due to an increased affinity of the modified antibody for the Fc gamma RIII receptor.  相似文献   

8.
To explore the molecular basis for the ability of aggregated IgG to block the phagocytosis by human polymorphonuclear leukocytes of Con A-opsonized E and of nonopsonized Escherichia coli with mannose-binding adhesins, we examined specific aspects of the glycoprotein structure of both the 40- to 43-kDa receptor for the Fc portion of IgG (Fc gamma RII) and the 50- to 78-kDa receptor for the Fc portion of IgG (Fc gamma RIIIPMN) from human polymorphonuclear leukocytes. Fc gamma RIIIPMN isolated by both mAb and ligand affinity chromatography, but not Fc gamma RII, binds Con A in Western blots. This binding is specifically inhibitable by alpha-methylmannoside. Digestion of Fc gamma RIIIPMN by recombinant endoglycosidase H, which is specific for high mannose-type (Con A-binding) oligosaccharides, alters the epitope recognized by mAb 3G8 in or near the IgG ligand-binding site of the receptor. Similarly, the ability of Fc gamma RIIIPMN to bind human IgG ligand is sensitive to endoglycosidase H digestion. Our data indicate that ligands other than the classical IgG opsonins can bind to human Fc gamma RIIIPMN per se through lectin-carbohydrate interactions. Furthermore, Fc gamma RIIIPMN contains a high mannose type oligosaccharide chain which contributes importantly to the integrity of the classical IgG ligand-binding site. Thus, specific glycosylations of the receptor are important for both classical and nonclassical engagement of Fc gamma RIII and may play a role in determining the properties of the ligand-binding site.  相似文献   

9.
Human polymorphonuclear neutrophils (PMN) express the low affinity receptors for the Fc domain of IgG (Fc gamma R), Fc gamma RII (CD32), and the glycosyl phosphatidylinositol-linked isoform of Fc gamma RIII (Fc gamma RIIIB, CD16) on their cell surface. Both of these receptors have been shown to be signal-transducing molecules. However, the mechanisms involved in such signaling are not clearly understood. In this report, we investigated intracellular Ca2+ ([Ca2+]i) signals triggered in PMN by both the receptors using aggregated human IgG (AggIgG) and specific mAb to Fc gamma RII (KuFc79) and Fc gamma RIII (3G8) as ligands. Addition of AggIgG as well as cross-linking of mAb KuFc79 and 3G8 bound to PMN induced [Ca2+]i flux. However, preincubation of PMN with mAb KuFc79 (whole Ig or Fab fragments) in the absence of cross-linking abrogated the [Ca2+]i flux induced by AggIgG and mAb 3G8, indicating that Fc gamma RII receptor occupancy by mAb KuFc79 can block signals mediated by Fc gamma RIIIB. KuFc79-isotype-matched control mAb (MOPC 195) did not abolish the signals generated by AggIgG and mAb 3G8. In addition, mAb KuFc79 did not abrogate [Ca2+]i responses elicited by the receptor for the chemotactic peptide FMLP indicating that modulation of signal transduction by Fc gamma RII-bound KuFc79 is selective for certain receptors. Immunofluorescence analysis of PMN initially treated with mAb KuFc79 followed by AggIgG showed that KuFc79 did not block the binding of AggIgG to PMN. Similarly, competitive binding studies revealed no stearic hindrance between mAb KuFc79 bound to Fc gamma RII and mAb 3G8 bound to Fc gamma RIIIB. Thus, the ability of mAb KuFc79 to modulate signals induced by AggIgG and 3G8 strongly suggests that Fc gamma RII may regulate Fc gamma RIIIB signaling. While previous studies on Fc gamma RII revealed a requirement for cross-linking of the receptor to induce its effector functions, the present study shows that binding of mAb KuFc79 to Fc gamma RII itself, even in a univalent form, results in cross-regulation of Fc gamma RIIIB-triggered signals. Treatment of PMN with protein tyrosine kinase inhibitors, genistein and herbimycin A, abrogated the [Ca2+]i signals elicited by both mAb KuFc79 and 3G8. These results suggest that tyrosine kinase enzyme(s) associated with these receptors may be crucial for positive/negative signals triggered by Fc gamma RII and Fc gamma RIIIB.  相似文献   

10.
Studies on the role of microtubule integrity in stimulus-response coupling in neutrophils have generated contradictory data. To determine the role of microtubule integrity in stimulus-response coupling elicited by two different mechanisms, i.e., engagement of the Fc receptors (FcR gamma II, FcR gamma III) or engagement of the receptor for FMLP, we utilized colchicine (10 microM), which reduces pericentriolar microtubules to 29% of control, and compared its effect with that of nocodazole (50 microM) and lumicolchicine (10 microM). We now demonstrate that treatment of neutrophils with colchicine but not lumicolchicine, inhibits degranulation elicited by engagement of Fc receptors but augments degranulation in response to FMLP. In contrast to the ligand-specific effect of microtubule-disruption on degranulation, superoxide anion production (assembly of the NADPH oxidase) is unaffected by colchicine regardless of the ligand. To determine whether intact microtubules were required for responses elicited by ligation of Fc gamma RII(CD32) or Fc gamma RIII(CD16), mAb directed against these receptors were employed. Treatment of neutrophils with mAb KuFc79 directed against Fc gamma RII(CD32) or mAb 3G8 directed against Fc gamma RIII(CD16) inhibited degranulation of neutrophils elicited by immune complexes (IC). In contrast, removal of most of Fc gamma RIII by phosphatidylinositol-specific phospholipase C did not significantly alter degranulation in response to IC. We conclude that degranulation elicited by IC results from ligation of both Fc gamma RII and phosphatidylinositol-specific phospholipase C-insensitive Fc gamma RIII. The importance of microtubule integrity on the generation of intracellular signals was also examined. Degranulation of neutrophils proceeds via pertussis toxin-sensitive and insensitive pathways; treatment of cells with colchicine did not augment the action of pertussis toxin. Stimulation of neutrophils by chemoattractants results in a biphasic increase in 1,2-sn-diacylglycerol; a rapid increase ("triggering") secondary to the action of a phosphatidylinositol-specific phospholipase C, and a late increase ("activation") secondary to the action of a phosphatidylcholine-specific phospholipase C. Treatment of cells with colchicine altered the production of both [3H]-arachidonic acid-diacylglycerol and diacyl[14C]glycerol in parallel to its effect on degranulation. These studies indicate that the requirement of intact microtubules for degranulation is ligand-specific. Furthermore, assembly of the respiratory burst oxidase does not require intact microtubules. Microtubules most likely alter the cycling of specific receptors or the generation of specific intracellular signals required for stimulus-response coupling in the course of degranulation. Intact microtubules are not uniformly required for the discharge of granule contents during exocytosis.  相似文献   

11.
Preparations of gamma-aminobutyrate (GABA)/benzodiazepine receptor from pig cerebral cortex are composed of three major bands of polypeptides (51, 55 and 57 kDa) which are purified in a ratio of approx. 2:1:1 respectively. Treatment of purified receptor preparations with cyclic AMP-dependent protein kinase resulted in major incorporation of 32P into the 55 kDa band only. The maximum incorporation achieved was 0.6 mol of 32P/mol of 55 kDa polypeptide. The phosphorylated receptor subunit (beta-subunit) displays the same apparent Mr as a band labelled irreversibly with the GABA receptor agonist [3H]muscimol. The two nonphosphorylated subunit polypeptides (51 and 57 kDa) are each labelled irreversibly with [3H]flunitrazepam and are recognized by anti-peptide antibodies specific for alpha-subunits.  相似文献   

12.
Previous studies [Büller, Montgomery, Sasak & Grand (1987) J. Biol. Chem. 262, 17206-17211] have demonstrated that lactase-phlorizin hydrolase is inserted into the microvillus membrane (MVM) as a large precursor of approx. 220 kDa, which then undergoes two proteolytic cleavage steps to become the 130 kDa mature MVM protein. In order to assess the role of glycosylation in intracellular transport, the processing of this enzyme has been studied in the presence of castanospermine, an inhibitor of N-linked oligosaccharide modification and subsequent treatment with two endoglycosidases, endo-beta-N-acetyl-glucosaminidase (endo-H) and peptide:N-glycosidase-F (N-glycanase). We now show that the intracellular precursor (205 kDa) undergoes carbohydrate processing (220 kDa) and transport to the MVM where its further proteolytic cleavage is as described. Treatment of the intracellular 205 kDa precursor with either endo-H which cleaves only high-mannose N-linked oligosaccharides, or with N-glycanase, which cleaves both high-mannose and complex N-linked oligosaccharides, results in the conversion of the 205 kDa protein band to one of 195 kDa. These data suggest that the 205 kDa precursor contains only high-mannose N-linked carbohydrates, and that the unglycosylated nascent protein is 195 kDa. In the presence of castanospermine, an intracellular precursor of approx. 210 kDa is observed. When treated with endo-H or N-glycanase, this form also produces a protein of 195 kDa. The transport of the intracellular precursor to the MVM and further proteolytic processing is not blocked by the inhibitor. However, all MVM forms of lactase-phlorizin hydrolase show an increase of approx. 5 kDa. Treatment of these three MVM forms with endo-H indicates the increased presence of high mannose oligosaccharides in comparison with non-castanospermine-treated forms. The susceptibility to endo-H of the 130 kDa MVM band synthesized in the absence of castanospermine implies the presence of high-mannose N-linked oligosaccharides in the mature form of lactase-phlorizin hydrolase. Incubation of these MVM forms with N-glycanase further reduces their electrophoretic mobility, indicating the presence of complex N-linked oligosaccharides in the MVM forms, in contrast with the intracellular precursor. Altered glycosylation reduces but does not abolish intracellular transport of lactase-phlorizin hydrolase to the MVM.  相似文献   

13.
Purification of an 86-70 kDa nuclear DNA-associated protein complex   总被引:15,自引:0,他引:15  
In the course of studies on nucleolar antigens, monoclonal antibodies were developed, one of which recognized an 86 kDa antigen as shown by analysis of nuclear extracts from HeLa or Namalwa cells. Immunofluorescence studies on HeLa cells showed a nucleoplasmic and phase-dependent nucleolar localization of the monoclonal antibody was decreased after digestion with DNAase I but not with RNAase A. For purification, the antigen was released from nuclei by digestion with DNAase I and then purified by chromatography on DEAE cellulose, phosphocellulose and antibody-Sepharose affinity chromatography. Interestingly, the immunoaffinity purified product contained two polypeptide chains; the immunoreactive polypeptide had an Mr of 86 000 and a pI of 6.0. The complex also contained a 70 kDa, pI 6.5 nonantigenic polypeptide in a 1:1 ratio. The overall purification of the complex was 5700-fold. Both polypeptides contained approx. 15 mol% glutamic acid and the 70 kDa polypeptide contained approx. 15 mol% serine.  相似文献   

14.
A monoclonal antibody, mAb 1A, that immunoprecipitates the [3H]PN200-110-binding complex from rabbit skeletal muscle has been used to study the subunit structure of the dihydropyridine-sensitive, voltage-activated calcium channel. Digitonin-solubilized [3H]PN200-110-binding component, purified by wheat germ agglutinin chromatography, sediments as a 21 S complex. The sedimentation coefficient of the complex is increased to about 24 S after incubation with mAb 1A IgG. Four polypeptides with apparent molecular weights under nonreducing conditions of 220,000, 200,000, 61,000, and 33,000 co-sediment with the 21 S complex. mAb 1A recognizes the Mr 200,000 polypeptide, as shown by Western blotting analysis. [3H] PN200-110 complex purified by wheat germ agglutinin chromatography followed by immunoaffinity chromatography on an mAb 1A column is comprised primarily of the same four polypeptides. When analyzed by sodium dodecyl sulfate gel electrophoresis under reducing conditions, the Mr 220,000 protein migrates as a polypeptide of Mr 143,000; the mobility of the Mr 200,000 protein recognized by mAb 1A is unaffected by reduction. Thus, the Mr 200,000 polypeptide appears to be a previously undescribed component of the dihydropyridine-binding complex and, in association with the other polypeptides, may comprise the voltage-sensitive calcium channel.  相似文献   

15.
The FcR for IgG on the plasma membrane of cells of the mononuclear phagocyte system mediate a number of different biologic responses such as phagocytosis, pinocytosis, superoxide generation, and antibody-dependent cytotoxicity. In the interest of understanding the pathophysiology of these processes we have begun to characterize the FcR for IgG on two readily available sources of macrophages--the lung and the peritoneum--using antireceptor mAb. We find that all three of the distinct classes of FcR for IgG which have been described in man are present on both pulmonary and peritoneal macrophages. Most monocytes, we suggest, bear low numbers of Fc gamma RIII whereas a small subpopulation of monocytes expresses substantial numbers of Fc gamma RIII. Furthermore, we find that two different forms of Fc gamma RIII differ in their capacity to bind anti-Fc gamma RIII mab 3G8 in the presence of human IgG. Human IgG does not block the binding of mAb 3G8 to neutrophils, but it does block 3G8 binding to macrophages and large granular lymphocytes; this finding correlates with the expression of the two Fc gamma RIII genes, I and II, in man. Studies aimed at illuminating the molecular mechanisms of Fc gamma R-mediated processes in macrophages will require consideration of the receptors of all three classes.  相似文献   

16.
A receptor for acidic and basic fibroblast growth factors (aFGF and bFGF, respectively) was isolated from 7-day embryonic chick. Chromatography of solubilized membrane proteins on wheat germ agglutininagarose and aFGF-Sepharose yielded three major polypeptides migrating at 150, 70, and 45 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These polypeptides were eluted from aFGF-Sepharose with either 1.0 M NaCl or 100 micrograms/ml heparin, but were not retained on underivatized Sepharose. Cross-linking of 125I-aFGF or 125I-bFGF to either crude membrane preparations or to purified fractions yielded a 165-kDa complex, suggesting the existence of a 150-kDa FGF receptor after subtraction of approximately 15 kDa for 125I-FGF. Addition of excess aFGF or bFGF competed for binding of either 125I-aFGF or 125I-bFGF to FGF receptor preparations. Purified FGF receptor fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to Immobilon membranes, and incubated with 125I-aFGF or 125I-bFGF in order to identify FGF-binding polypeptides. Bound 125I-aFGF and 125I-bFGF were displaced by aFGF and bFGF, but not epidermal growth factor, consistent with the identification of the 150-kDa polypeptide as a receptor for acidic and basic FGF. Treatment of purified FGF receptor fractions with N-glycanase demonstrated that the 150-kDa polypeptide contained approximately 10 kDa of N-linked oligosaccharide. The apparent molecular mass of the 150-kDa polypeptide was unaffected by treatment with heparitinase, indicating that the 150-kDa polypeptide is not a heparan sulfate proteoglycan. Together, these data suggest that the 150-kDa polypeptide is a FGF receptor that may mediate the biological activities of aFGF and bFGF.  相似文献   

17.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The biochemical nature and relative topographic localization of Ag determinants recognized on CD45 molecular complex by mAb defining four distinct Ag specificities (conventional CD45, CD45R, 180 kDa and 220/205/190 kDa) have been investigated. These Ag specificities display a differential biochemical, cellular, and histochemical distributions and are important in the definition of CD4-positive complementary functional T cell subsets and/or distinct stages of thymic maturation. Protease treatment of either CD45-positive cells or purified CD45 molecules revealed that both conventional CD45 and 180-kDa (UCHL1 epitope) Ag specificities are defined by epitopes present on a protease-resistant domain which is internal to the protease-sensitive epitopes defining both CD45R and 220/205/190-kDa Ag specificities. In addition, it is shown that carbohydrate moieties are contributing to the epitopes recognized by both the anti-180-kDa UCHL1 and the anti-220/205/190-kDa mAb. Neuraminidase treatment, which cleaves sialic acids either from N- or O-linked oligosaccharides, abrogated the reactivity of both mAb. However, N-glycanase treatment, which selectively cleaves N-linked sugars, did not affect the recognition of these two epitopes. Thus, these results demonstrate that the Ag determinants recognized by the UCHL1 and the anti-220/205/190-kDa mAb, which are topographically unrelated, are associated with sialic acids from O-linked-type oligosaccharides, emphasizing the contribution of carbohydrates to the Ag heterogeneity of CD45 molecular complex.  相似文献   

19.
Murine Fc gamma RII and Fc gamma RIII have highly homologous extracellular domains, but unrelated transmembrane and intracytoplasmic (IC) domains. Murine Fc gamma RIIb1 and b2 are two isoforms of single-chain receptors which differ only by 47 aa in their IC domain. Murine Fc gamma RIII are composed of an IgG-binding alpha-chain, the intracellular portion of which is unrelated to that of Fc gamma RII, and of a homodimeric gamma-chain which also associates with Fc epsilon RI. Murine mast cells express Fc gamma RII, Fc gamma RIII, and Fc epsilon RI. They can be induced to degranulate by murine IgG immune complexes or by F(ab')2 fragments of the rat anti-murine Fc gamma RII/III mAb 2.4G2, complexed to mouse anti-rat (MAR) F(ab')2. In order to determine which murine Fc gamma R can activate mast cells, cDNA encoding murine Fc gamma RIIb1, Fc gamma RIIb2 or Fc gamma RIII alpha were stably transfected into RBL-2H3 cells. Murine Fc gamma RIII but not Fc gamma RIIb1 or Fc gamma RIIb2 induced serotonin release when aggregated by (2.4G2-MAR) F(ab')2 complexes. The respective roles of the IC domains of murine Fc gamma RIII subunits in signal transduction were investigated by stably transfecting cDNA encoding IC-deleted or chimeric murine Fc gamma R into RBL-2H3 cells. The substitution of the IC domain of murine Fc gamma RII for that of murine Fc gamma RIII gamma, but not that of murine Fc gamma RIII alpha, conferred the ability to trigger serotonin release. The deletion of IC sequences of the alpha subunit did not alter the ability of murine Fc gamma RIII to trigger serotonin release. It follows that 1) murine Fc gamma RIII, but not Fc gamma RII, can induce RBL cells to release serotonin, 2) the aggregation of the IC domain of the murine Fc gamma RIII gamma subunit is sufficient, but 3) the IC domain of the murine Fc gamma RIII alpha subunit is neither sufficient nor necessary for triggering serotonin release.  相似文献   

20.
The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide. Complete removal of N-linked oligosaccharide from the dopamine D2 receptor did not change the rank order potency of agonist and antagonist compounds to compete for [3H]spiperone binding to crude membrane fractions. The dopamine D2 receptor represents a highly glycosylated neural receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号