首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of nitric oxide (NO) is one of the important effector functions of innate immune cells. Although several reports have indicated mistletoe lectins induce immune cells to produce cytokines, studies regarding the activities of the lectins in the production of NO have been very limited. Here, we report on the induction of NO synthesis in a murine macrophage cell line, RAW264.7, by Korean mistletoe lectin (KML-IIU). When the macrophage cells were treated with KML-IIU in the presence of a suboptimal concentration of IFN-γ, NO production was induced in a concentration-dependent manner. Significantly higher levels of NO were induced by subchains of the KML-IIU (A and B), which have lower toxicities, as compared to the hololectin. Furthermore, expression of the inducible nitric oxide synthase (iNOS) gene was elevated in accordance with the level of NO production. When the synthase was inhibited by iNOS inhibitors (L-NIL and L-NAME), NO production was specifically reduced in a concentration-dependent manner. Our studies demonstrate that the KML-IIU and its subchains induce NO production in murine macrophage cells via activation of the iNOS gene expression, suggesting that the KML-IIU subchains may be used as an immunomodulator to enhance the effector functions of innate immune cells.  相似文献   

2.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

3.
Kim JM  Kim JS  Jung HC  Song IS  Kim CY 《Helicobacter》2002,7(2):116-128
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation.  相似文献   

4.
Nitric oxide is a mediator of many disease states. Previous studies have demonstrated that ruthenium(III) polyaminocarboxylates can react with NO to form stable complexes reducing the levels of nitrite in the culture medium of stimulated RAW264 macrophages and reverse the NO-mediated hypotension in animal models of septic shock. It was necessary to confirm that these observations were due to NO scavenging and not inhibition of the NO metabolic pathway. Using RAW264 cells it was confirmed that [Ru(H(3)dtpa)(Cl)] (AMD6221) was neither acting at the level of iNOS induction, nor as an inhibitor of iNOS by measuring iNOS mRNA by RT-PCR and protein by Western blot and enzyme activity. Using HPLC, the nitrosyl adduct of reaction of AMD6221, [Ru(H(2)dtpa)NO], was identified in the medium of stimulated RAW264 cells co-incubated with AMD6221, concomitant with a stoichiometric reduction in nitrite/nitrate levels, thus confirming that the ruthenium(III) polyaminocarboxylates exert their pharmacological effect by scavenging NO.  相似文献   

5.
Cytotoxic mechanism of Vibrio vulnificus cytolysin in CPAE cells   总被引:4,自引:0,他引:4  
Rho HW  Choi MJ  Lee JN  Park JW  Kim JS  Park BH  Sohn HS  Kim HR 《Life sciences》2002,70(16):1923-1934
Vibrio vulnificus is an estuarian bacterium that causes septicemia and serious wound infection. The cytolysin, one of the important virulence determinants in V. vulnificus infection, has been reported to have lethal activity primarily by increasing pulmonary vascular permeability. In the present study, we investigated the cytotoxic mechanism of V. vulnificus cytolysin in cultured pulmonary artery endothelial (CPAE) cells, which are possible target cells of cytolysin in vivo. V. vulnificus cytolysin caused the CPAE cell damages with elevation of the cytosolic free Ca2+, DNA fragmentation, and decrease of the cellular NAD+ and ATP level. These cytotoxic effects of V. vulnificus cytolysin were prevented by EGTA and aminobenzamide, but were not affected by verapamil or catalase. These results indicate that the elevation of cytosolic free Ca2+ induced by V. vulnificus cytolysin causes the increase of DNA fragmentation and the damaged DNA activates nuclear poly(ADP-ribose) synthetase, which depletes the cellular NAD+ and ATP, resulting in cell death.  相似文献   

6.
7.
We attempted to ascertain the neuroprotective effects and mechanisms of minocycline in inflammatory-mediated neurotoxicity using primary neuron/glia co-cultures treated with lipopolysaccharide (LPS). Neuronal cell death was induced by treatment with LPS for 48 h, and the cell damage was assessed using lactate dehydrogenase (LDH) assays and by counting microtubule-associated protein-2 (MAP-2) positive cells. Through terminal transferase deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-staining and by measuring caspase-3 activity, we found that LPS-induced neuronal cell death was mediated by apoptosis. We determined that pre-treatment with minocycline significantly inhibited LPS-induced neuronal cell death. In addition, LPS induced inducible nitric oxide synthase (iNOS) expression significantly, resulting in nitric oxide (NO) production within glial cells, but not in neurons. Both nitric oxide synthase (NOS) inhibitors (N(G)-monomethyl-L-arginine monoacetate (L-NMMA) and S-methylisothiourea sulfate (SMT)) and minocycline inhibited iNOS expression and NO release, and increased neuronal survival in neuron/glia co-cultures. Pre-treatment with minocycline significantly inhibited the rapid and extensive production of tumor necrosis factor-alpha (TNF-alpha) mediated by LPS in glial cells. We also determined that the signaling cascade of LPS-mediated iNOS induction and NO production was mediated by TNF-alpha by using neutralizing antibodies to TNF-alpha. Consequently, our results show that the neuroprotective effect of minocycline is associated with inhibition of iNOS induction and NO production in glial cells, which is mediated by the LPS-induced production of TNF-alpha.  相似文献   

8.
9.
Zhong GZ  Chen FR  Bu DF  Wang SH  Pang YZ  Tang CS 《Life sciences》2004,74(25):3055-3063
Radiation is a promising and new treatment for restenosis following angioplasty. Nitric oxide has been proposed as a potential "anti-restenotic" molecule. We radiated the cultured rat vascular smooth muscle cells with Cobalt-60 gamma radiation at doses of 14 and 25Gy and observed nitrite production, cGMP content, L-arginine uptake, inducible nitric oxide synthase (iNOS) activity, and the gene expression of iNOS. Results showed that radiation at doses of 14 and 25Gy increased cGMP content by 92.4% and 86.4%, respectively. Radiation at the dose of 25Gy increased the iNOS activity and nitrite content, but radiation at the dose of 14Gy had no significant effect on iNOS activity and NO production. Both doses of radiation significantly decreased the L-arginine transport. Radiation at the doses of 14 and 25Gy increased iNOS gene expression significantly, which was consistent with the effect of radiation on iNOS activity. In conclusion, radiation induces the NO generation by up-regulating the iNOS activity.  相似文献   

10.
We investigated the inductive activity of infective influenza A/PR/8/34 (PR8) virus and its ether-split product (ESP) on the expression of inducible nitric oxide (NO) synthase (iNOS) and NO production in RAW264.7 (RAW) cells, a murine macrophage (M psi) cell line, and thioglycolate-elicited peritoneal M psi (TPM). In both cells, PR8 virus infection induced iNOS mRNA between 4 hr and 24 hr, attaining a peak value at 12 hr. In correlation with induction of iNOS mRNA, NO amounts increased significantly from 12 to 24 hr. Moreover, this study demonstrated that ESP with the same hemagglutination titer as PR8 virus could induce iNOS mRNA and NO production, although the inductive activity of ESP was weaker than that of PR8 virus. Considering the dual role (beneficial and detrimental roles) of NO on certain inflammatory disorders and virus infections, the inductive activity of influenza virus on the iNOS-mediated NO production independent of its infectivity might contribute to a modification of influenza virus infection.  相似文献   

11.
12.
Previously we reported that mice infected recurrently with live Fusobacterium nucleatum(Fn) synthesize a significant amount of NO between 12 hr and 24 hr after Fn injection. Fn is a gram-negative rod periodontal pathogen. NO could not be induced by heat-killed Fn or in untreated mice. This NO, derived from the iNOS after infection of live Fn, was not involved in the Fn reduction because Fn clearance occurs within 6 hr. We investigated in this study whether this NO was involved in cytotoxicity in peritoneal exudate cells (PEC) in vivo. The mice were divided into two groups: those treated with live Fn (immune) and those left untreated (normal). PEC number, NO production, detection of apoptosis or death cells, and lactate dehydrogenase (LDH) release activity after injection of live Fn were compared in these groups. In the immune group, the increase of the total cell numbers caused by an increase in neutrophils, a significant NO production only after injection of live Fn at 24 hr and identification of iNOS positive macrophages were confirmed. The apoptotic rate was very low and did not increase at 24 hr in vivo. Therefore, apoptosis was seldom relevant to the NO. In the immune group, LDH activity was remarkable high at 24 hr, and dead cells and macrophages phagocytizing cell fragments increased at the same time. Pretreatment of L NMMA, an inhibitor of iNOS, suppressed LDH activity and cell death. Therefore, the NO derived from the iNOS is involved in the cytotoxicity. These results suggest that NO may contribute to the inflammatory response during Fn infection in periodontitis.  相似文献   

13.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

14.
15.
Curcumin has been strongly implicated as an anti-inflammatory agent, but the precise mechanisms of its action are largely unknown. In this study, we show that curcumin contributes to anti-inflammatory activity in the murine asthma model and lung epithelial cell A549 through suppression of nitric oxide (NO). To address this problem, curcumin was injected into the peritoneum of ovalbumin (OVA)-sensitized mice before the last allergen challenge. OVA challenge resulted in activation of the production of inducible nitric oxide (iNOS) in lung tissue, inflammatory cytokines, recruitment of eosinophils to lung airways, and airway hyper-responsiveness to inhaled methacholine. These effects of ovalbumin challenge were all inhibited by pretreatment of mice with curcumin. Furthermore, supplementation with curcumin in the A549 human airway epithelial cells decreased iNOS and NO production induced by IFN-γ. These findings show that curcumin may be useful as an adjuvant therapy for airway inflammation through suppression of iNOS and NO.  相似文献   

16.
As a signalling molecule of the integral membrane protein family, caveolin participates in cellular signal transduction via interaction with other signalling molecules. The nature of interaction between nitric oxide (NO) and caveolin in the brain, however, remains largely unknown. In this study we investigated the role(s) of NO in regulating caveolin-1 expression in rat ischemic brains with middle cerebral artery occlusion (MCAO). Exposure to 1 h ischemia induced the increases in neuronal nitric oxide synthase (nNOS) and NO concentration with concurrent down-regulation of caveolin-1 expression in the ischemic core of rat brains. Subsequent 24 h or more reperfusion time led to an increase in inducible NOS (iNOS) expression and NO production, as well as a decline of caveolin-1 protein at the core and penumbra of the ischemic brain. Afterwards, NOS inhibitors and an NO donor were utilized to clarify the link between NO production and caveolin-1 expression in the rats with 1 h ischemia plus 24 h reperfusion. N(G)-nitro-l-arginine methyl ester (L-NAME, a non-selective NOS inhibitor), N(6)-(1-iminoethyl)-lysine (NIL, an iNOS inhibitor), and 7-nitroindazole (7-NI, a nNOS inhibitor) prevented the loss of caveolin-1 in the core and penumbra of the ischemic brain, whereas l-N(5)-(1-iminoethyl)-ornithine (L-NIO, an endothelial NOS inhibitor) showed less effect than the other NOS inhibitors. S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor) down-regulated the expression of caveolin-1 protein in normal and ischemic brains. These results, when taken together, suggest that NO modulates the expression of caveolin-1 in the brain and that the loss of caveolin-1 is associated with NO production in the ischemic brain.  相似文献   

17.
Nitric oxide (NO) has emerged as an important mediator of many physiological functions. Recent reports have shown that NO participates in the wound healing process, however, its role in keloid formation remains unclear. This study aimed to investigate the effect of NO on keloid fibroblasts (KF) and to determine the levels of inducible nitric oxide synthase (iNOS) expression in clinical specimens of keloid. Scar tissue from seven keloid patients with matched perilesion skin tissue controls was studied for inducible nitric oxide synthase expression and location. In addition, primary keloid and normal scar skin fibroblast cultures were set up to investigate the effects of NO in inducing collagen type I expression. Inducible nitric oxide synthase expression, and NO production were elevated in keloid scar tissues but not in matched perilesion skin tissues. Furthermore, exposure of KF to exogenous NO resulted in increased expression of collagen type I in a dose-dependent manner. NO exposure also induced time-course dependent collagen I expression that peaked at 24h in KF. Taken together, these results indicate that excess collagen formations in keloid lesion may be attributed to iNOS overexpression.  相似文献   

18.
旨在探讨羟基红花黄色素A(hydroxysafflor yellow A,HSYA)对脂多糖(lipopolysaccharide,LPS)作用后人脐静脉内皮细胞株HUVECs细胞株诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表达的影响.培养HUVECs细胞株,用 1 mg/L LPS及不同浓度的HYSA处理细胞24 h,MTT法检测细胞增殖情况,硝基还原酶法检测培养液中一氧化氮(NO)含量,RT-PCR及Western blotting检测iNOS表达.结果表明0.01、0.1 mmol/L HYSA对LPS引起的iNOS升高无明显作用,但1 mmol/L HYSA能明显抑制LPS作用后高度表达的iNOS量.因此,HYSA能下调LPS所致iNOS的异常表达,这可能有助于临床治疗血管炎症疾病.  相似文献   

19.
目的和方法:采用HO活性抑制剂诱导大鼠高血压模型,观察血压变化、主动脉HO和NOS活性、CO和NO产生释放,并测定血浆和主动脉平滑肌组织中cGMP含量,以探讨内源性NO和CO在高血压发生机制中的作用及其相互关系。结果:大鼠应用HO抑制剂ZnDPBG腹腔注射2周后,继续饲养到第4周出现持续而稳定的高血压,同时总NOS(tNOS)和诱导型NOS(iNOS)的活性分别增加45.4%和73.3%(均为P〉  相似文献   

20.
Li F  Mei Y  Wang Y  Chen C  Tu J  Xiao B  Xu L 《Cellular immunology》2005,234(1):23-30
Trichosanthin (TCS) has been found to exhibit inflammation-suppressing effect but the underlying mechanisms are not clear. In this study, we found that TCS inhibited OVA-specific T cell proliferation in a dose-dependent manner. Such inhibition was correlated with enhanced cell death. At the same time, inducible nitric oxide synthase (iNOS) mRNA expression and protein levels were found increased in cells treated with TCS, and nitric oxide (NO) production by cells was elevated in the presence of TCS. When L-NIL, the specific inhibitor of iNOS, was added to suppress NO production induced by TCS, OVA-specific cell death was significantly inhibited, meanwhile, thymidine incorporation of cells was rescued towards normal levels. These results indicate that TCS could inhibit antigen-specific T cell activation via NO-mediated apoptosis pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号