首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The problem of intron recognition in S. cerevisiae appears to be in part solved by the strong conservation of intron encoded splicing signals, in particular the 5' GUAUGU and the branch point UACUAAC which interact via base pairing with the RNA components of U1 and U2 snRNPs respectively. Nevertheless, the mere presence of such signals is insufficient for splicing to occur. In the S. cerevisiae ACT1 intron, a silent UACUAAC-like sequence (UACUAAG) is located 7 nucleotides upstream of the canonical branch point signal. In order to investigate whether other factors, in addition to the U2-UACUAAC base-pair interactions, affect branch point selection in yeast, we created a cis-competition assay by converting the UACUAAG to a strong branch point signal (UACUAAC). If simply having a canonical UACUAAC sequence were sufficient for lariat formation, a 1:1 ratio in usage of the two signals should have been observed. In this double branch point intron, however, the downstream UACUAAC is utilized preferentially (4:1). Results obtained from the analyses of numerous sequence variants flanking the two UACUAAC sequences, demonstrate that non-conserved sequences in the branch point region are able to define lariat formation. Consequently, we conclude that U2 base-pairing is not the only requirement determining branch point selection in yeast, and local structure in the vicinity of the branch point could play a critical role in its recognition.  相似文献   

2.
The introns of Drosophila pre-mRNAs have been analysed for conserved internal sequence elements near the 3' intron boundary similar to the T-A-C-T-A-A-C in yeast introns and the C/T-T-A/G-A-C/T in introns of other organisms. Such conserved internal elements are the 3' splice signals recognized in intron splicing. In the lariat splicing mechanism, the G at the 5' end of an intron joins covalently to the last A of a 3' splice signal to form a branch point in a splicing intermediate. Analysis of 39 published sequences of Drosophila introns reveals that potential 3' splice signals with the consensus C/T-T-A/G-A-C/T are present in 18 cases. In 17 of the remaining cases signals are present which vary from this consensus just in the middle or last position. In Drosophila introns the 3' splice signal is usually located in a discrete region between 18 and 35 nucleotides upstream from the 3' splice point. We note that the Drosophila small nuclear U2-RNA has sequences complementary to C-T-G-A-T, one variant of the signal, and to C-A-G, one variant of the 3' terminus of an intron. We also note that the absence of any A-G between -3 and -19 from the 3' splice point may be an essential feature of a strong 3' boundary.  相似文献   

3.
The branchpoint sequence and associated polypyrimidine tract are firmly established splicing signals in vertebrates. In plants, however, these signals have not been characterized in detail. The potato invertase mini-exon 2 (9 nt) requires a branchpoint sequence positioned around 50 nt upstream of the 5' splice site of the neighboring intron and a U11 element found adjacent to the branchpoint in the upstream intron (Simpson et al., RNA, 2000, 6:422-433). Utilizing the sensitivity of this plant splicing system, these elements have been characterized by systematic mutation and analysis of the effect on inclusion of the mini-exon. Mutation of the branchpoint sequence in all possible positions demonstrated that branchpoints matching the consensus, CURAY, were most efficient at supporting splicing. Branchpoint sequences that differed from this consensus were still able to permit mini-exon inclusion but at greatly reduced levels. Mutation of the downstream U11 element suggested that it functioned as a polypyrimidine tract rather than a UA-rich element, common to plant introns. The minimum sequence requirement of the polypyrimidine tract for efficient splicing was two closely positioned groups of uridines 3-4 nt long (<6 nt apart) that, within the context of the mini-exon system, required being close (<14 nt) to the branchpoint sequence. The functional characterization of the branchpoint sequence and polypyrimidine tract defines these sequences in plants for the first time, and firmly establishes polypyrimidine tracts as important signals in splicing of at least some plant introns.  相似文献   

4.
The mouse glycinamide ribonucleotide formyltransferase (GART) locus is known to produce two functional proteins, one by recognition and use of an intronic polyadenylation site and the other by downstream splicing. We now report a similar intronic polyadenylation mechanism for the human GART locus. The human GART gene has two potential polyadenylation signals within the identically located intron as that involved in intronic polyadenylation in the mouse gene. Each of the potential polyadenylation signals in the human gene was followed by an extensive polyT rich tract, but only the downstream signal was preceded by a GT tract. Only the downstream signal was utilized. The polyT rich tract which followed the functional polyadenylation site in the human GART gene was virtually identical in sequence to a similarly placed region in the mouse gene. An exact inverted complement to the polyT rich stretch following the active polyadenylation signal was found in the upstream intron of the human gene, suggesting that a hairpin loop may be involved in this intronic polyadenylation.  相似文献   

5.
In potato invertase genes, the constitutively included, 9-nucleotide (nt)-long mini-exon requires a strong branchpoint and U-rich polypyrimidine tract for inclusion. The strength of these splicing signals was demonstrated by greatly enhanced splicing of a poorly spliced intron and by their ability to support splicing of an artificial mini-exon, following their introduction. Plant introns also require a second splicing signal, UA-rich intronic elements, for efficient intron splicing. Mutation of the branchpoint caused loss of mini-exon inclusion without loss of splicing enhancement, showing that the same U-rich sequence can function as either a polypyrimidine tract or a UA-rich intronic element. The distinction between the splicing signals depended on intron context (the presence or absence of an upstream, adjacent and functional branchpoint), and on the sequence context of the U-rich elements. Polypyrimidine tracts tolerated C residues while UA-rich intronic elements tolerated As. Thus, in plant introns, U-rich splicing elements can have dual roles as either a general plant U-rich splicing signal or a polypyrimidine tract. Finally, overexpression of two different U-rich binding proteins enhanced intron recognition significantly. These results highlight the importance of co-operation between splicing signals, the importance of other nucleotides within U-rich elements for optimal binding of competing splicing factors and effects on splicing efficiency of U-rich binding proteins.  相似文献   

6.
C Schmelzer  M W Müller 《Cell》1987,51(5):753-762
Deletion or substitution of the branch A residue in group II intron bl1 significantly reduces splicing activity; yet, residual exon ligation is correct, and lariats have their branch points at the normal distance from the 3' end of the intron. Mutations in the sequence facing the branch point also allow residual lariat formation; however, free 3' exons are generated with false 5' termini, all of which are within a UCACA consensus sequence located upstream or downstream of the normal 3' splice site. These results indicate that both the conserved 3' splice site APy and the spatial arrangements in stem 6 are crucial for correct 3' splice site selection.  相似文献   

7.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

8.
An intermediate stage in the process of eukaryotic RNA splicing is the formation of a lariat structure. It is anchored at an adenosine residue in intron between 10 and 50 nucleotides upstream of the 3' splice site. A short conserved sequence (the branch point sequence) functions as the recognition signal for the site of lariat formation. It has been generally assumed that the branch point is recognized mainly by the presence of its unique sequence where the lariat is formed. However, the known branch point consensus sequence is found to be distributed nearly randomly throughout the gene sequence with only a slightly higher frequency in the expected lariat region. Further, the known consensus sequence is found to be clearly inadequate to specify branch points. These observations have implications for understanding the mechanism of branch point recognition in the process of splicing, and the possible evolution of the branch point signal.  相似文献   

9.
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.  相似文献   

10.
B Ruskin  J M Greene  M R Green 《Cell》1985,41(3):833-844
The excised introns of pre-mRNAs and intron-containing splicing intermediates are in a lariat configuration in which the 5' end of the intron is linked by a 2'-5' phosphodiester bond (RNA branch) to a single adenosine residue near the 3' end of the intron. To determine the role of the specific sequence surrounding the RNA branch, we have mutated the branch point sequence of the human beta-globin IVS1. Pre-mRNAs lacking the authentic branch point sequence are accurately spliced in vitro; processing of the mutant pre-mRNAs generates RNA lariats due to the activation of cryptic branch points within IVS1. The cryptic branch points always occur at adenosine residues, but the sequences surrounding the branched nucleotide vary. Regardless of the type of mutation or the sequences remaining within IVS1, the cryptic branch points are 22 to 37 nucleotides upstream of the 3' splice site. These results suggest that RNA branch point selection is primarily based on a mechanism that measures the distance from the 3' splice site.  相似文献   

11.
An iterative in vitro splicing strategy was employed to select for optimal 3' splicing signals from a pool of pre-mRNAs containing randomized regions. Selection of functional branchpoint sequences in HeLa cell nuclear extract yielded a sequence motif that evolved from UAA after one round of splicing toward a UACUAAC consensus after seven rounds. A significant part of the selected sequences contained a conserved AAUAAAG motif that proved to be functional both as a polyadenylation signal and a branch site in a competitive manner. Characterization of the branchpoint in these clones to either the upstream or downstream adenosines of the AAUAAAG sequence revealed that the branching process proceeded efficiently but quite promiscuously. Surprisingly, the conserved guanosine, adjacent to the common AAUAAA polyadenylation motif, was found to be required only for polyadenylation. In an independent experiment, sequences surrounding an optimal branchpoint sequence were selected from two randomized 20-nt regions. The clones selected after six rounds of splicing revealed an extended polypyrimidine tract with a high frequency of UCCU motifs and a highly conserved YAG sequence in the extreme 3' end of the randomized insert. Mutating the 3' terminal guanosine of the intron strongly affects complex A formation, implying that the invariant AG is recognized early in spliceosome assembly.  相似文献   

12.
The chicken beta-tropomyosin gene contains 11 exons, two of which are spliced into mRNA only in skeletal muscle. One pair of alternative exons, 6A and 6B, is found in the middle of the gene; they are spliced in a mutually exclusive manner. The non-muscle splice 6A-7 is by far the predominant in vitro reaction in a HeLa cell nuclear extract. A minor product is the 6A-6B splice, which is excluded in all tissues. This minor product results from the use of a branch point located 105 nt upstream of the 3' end of the intron separating exons 6A and 6B. The region between the branch point sequence and the final AG contains a stretch of approximately 80 pyrimidines. We have examined the role of the distance of the branchpoint to the 3' splice site and of the sequences between these two elements. Our results suggest that at least two cis-acting elements contribute to the mutual exclusivity of exons 6A and 6B. The intron between exons 6A and 6B is intrinsically poorly 'spliceable' both because the branch point is too far upstream of the 3' end of the intron to give efficient splicing and because of the particular sequence lying between this branch point and the 3' splice site.  相似文献   

13.
14.
15.
16.
Several 3' splice signals are known todate. At the 3' splice site an AG doublet is frequently found. Just upstream of the splice site there is a string of 6-11 pyrimidines. More recently it has been found that one of the stages in the splicing process involves formation of a lariat, in which the 5' end of the intron forms a 2'-5' branch with an A residue located 18-37 nucleotides upstream of the 3' splice site. The branching-point consensus is weakly defined and consists of the sequence YNYTRAY, where Y is a pyrimidine, R a purine and N any base. The A in the sixth position is the one with which branching occurs. Here we present the results of extensive searches for additional putative signals around the branching-point consensus and the 3' splice site in rodent nuclear precursor mRNAs. The signals obtained for the over 370 rodent introns are compared with those found in a larger eukaryotic sample containing over 900 nuclear pre-mRNA introns. Of particular interest are GGGA and CCCA. In both analyses GGGA occurs about 60 nucleotides upstream and CCCA is found 3-40 nucleotides downstream from the 3' splice site. A model explaining some of the putative signals discussed here is also proposed. This model involves formation of alternate stem-loop structures around the branching point and 3' splice site. Such signals and structures can possibly aid in protein or nucleoprotein branching point and splice site recognition.  相似文献   

17.
A single cardiac troponin T (cTNT) gene generates two mRNAs by including or excluding the 30-nucleotide exon 5 during pre-mRNA processing. Transfection analysis of cTNT minigenes has previously demonstrated that both mRNAs are expressed from unmodified minigenes, and mutations within exon 5 can lead to complete skipping of the exon. These results suggested a role for exon sequence in splice site recognition. To investigate this potential role, an in vitro splicing system using cTNT precursors has been established. Two-exon precursors containing the alternative exon and either the upstream exon or downstream exon were spliced accurately and efficiently in vitro. The mutations within the alternative exon that resulted in exon skipping in vivo specifically blocked splicing of the upstream intron in vitro and had no effect on removal of the downstream intron. In addition, the splicing intermediates of these two precursors have been characterized, and the branch sites utilized on the introns flanking the alternative exon have been determined. Potential roles of exon sequence in splice site selection are discussed. These results establish a system that will be useful for the biochemical characterization of the role of exon sequence in splice site selection.  相似文献   

18.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

19.
20.
Revertants have been obtained from six mutants of the box9 cluster, which are supposed to be defective in RNA splicing as a result of alterations in a splice signal sequence. This sequence is in the 5' part of intron 4 of the cob gene, 330 to 340 bp downstream from the 5' splice site. Sequencing reveals that reversion to splicing competence is achieved by restoration of the wild-type box9 sequence; by creation of novel box9 sequences; and by introduction of a second site or suppressor mutation (sup-) compensating for the effect of the primary box9- mutation. The sup- mutation alters a sequence in intron 4,293 bp upstream from the box9- primary mutation. The box9 sequence and this upstream sequence can base pair to form an intramolecular hybrid in intron RNA in which box9- and sup- are compensatory base pair exchanges (G----A and C----U, respectively). Thus intramolecular hybrid structures of intron RNA are essential for RNA splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号