首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of mechanisms of electrotransfection using Escherichia coli (JM 105) and the plasmid DNA pBR322 as model system is reported. pBR322 DNA carries an ampicillin resistance gene: E. coli transformants are conveniently assayed by counting colonies in a selection medium containing 50 micrograms/ml ampicillin and 25 micrograms/ml streptomycin. Samples not exposed to the electric field showed no transfection. In the absence of added cations, the plasmid DNA remains in solution and the efficiency of the transfection was 2 x 10(6)/micrograms DNA for cells treated with a 8-kV/cm, 1-ms electric pulse (square wave). DNA binding to the cell membrane greatly enhanced the efficiency of the transfection and this binding was increased by milimolar concentrations of CaCl2, MgCl2, or NaCl (CaCl2 greater than MgCl2 greater than NaCl). For example, in the presence of 2.5 mM CaCl2, 55% of the DNA added bound to E. coli and the transfection efficiency was elevated by two orders of magnitude (2 x 10(8)/micrograms DNA). These ions did not cause cell aggregation. With a low ratio of DNA to cells (less than 1 copy/cell), transfection efficiency correlated with the amount of DNA bound to the cell surface irrespective of salts. When the DNA binding ratio approached zero, the transfection efficiency was reduced by two to three orders, indicating that DNA entry by diffusion through the bulk solution was less than 1%. Square pulses of up to 12 kV/cm and 1 ms were used in the electrotransfection experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The nucleic acid binding properties of the testis protein, TP, were studied with the help of physical techniques, namely, fluorescence quenching, UV difference absorption spectroscopy, and thermal melting. Results of quenching of tyrosine fluorescence of TP upon its binding to double-stranded and denatured rat liver nucleosome core DNA and poly(rA) suggest that the tyrosine residues of TP interact/intercalate with the bases of these nucleic acids. From the fluorescence quenching data, obtained at 50 mM NaCl concentration, the apparent association constants for binding of TP to native and denatured DNA and poly(rA) were calculated to be 4.4 X 10(3) M-1, 2.86 X 10(4) M-1, and 8.5 X 10(4) M-1, respectively. UV difference absorption spectra upon TP binding to poly(rA) and rat liver core DNA showed a TP-induced hyperchromicity at 260 nm which is suggestive of local melting of poly(rA) and DNA. The results from thermal melting studies of binding of TP to calf thymus DNA at 1 mM NaCl as well as 50 mM NaCl showed that although at 1 mM NaCl TP brings about a slight stabilization of the DNA against thermal melting, a destabilization of the DNA was observed at 50 mM NaCl. From these results it is concluded that TP, having a higher affinity for single-stranded nucleic acids, destabilizes double-stranded DNA, thus behaving like a DNA-melting protein.  相似文献   

3.
Electrochemical methods were used to activate MnIII and FeIII complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2TMPyP) to cause cleavage of pBR322 DNA and to study their interaction with sonicated calf thymus DNA. Electrochemical reduction of MnIIITMPyP and FeIIITMPyP (at low concentrations) in the presence of O2 was required to activate these complexes. However, FeIIITMPyP at 1 x 10(-6) M produced DNA strand breakage without being electrochemically reduced. At low concentrations, FeIITMPyP was more efficient at cleaving DNA than MnIITMPyP. Reduction of O2 at a platinum electrode also produced some cleavage but to a much smaller extent. The oxidized form of MnIIITMPyP (charge 5+) has higher affinity for sonicated calf thymus (CT) DNA than the reduced form (charge 4+), as determined by the negative shift in E degrees' for the voltammetric wave in the presence of DNA. Both forms of FeIIITMPyP (charge 4+) interact with DNA to about the same extent. Differential pulse voltammetry was used to determine binding constants (K) and binding-site sizes (s) of the interaction of these metalloporphyrins with sonicated CT DNA. The data were analyzed assuming both mobile and static equilibria. MnIIITMPyP binds to DNA (5 mM Tris, 50 mM NaCl, pH 7) with K = 5 (+/- 2) x 10(6) M-1, s = 3 bp (mobile) or K = 3.6 (+/- 0.3) x 10(6) M-1, s = 4 bp (static). FeIIITMPyP at that ionic strength caused DNA precipitation. At higher ionic strength (0.1 M Tris, 0.1 M NaCl, pH 7), FeIIITMPyP associates to DNA with K = 4.4 (+/- 0.2) x 10(4) M-1, s = 5 bp (mobile) or K = 1.9 (+/- 0.1) x 10(4) M-1, s = 6 bp (static).  相似文献   

4.
This paper presents methods developed in order to analyze experimental results concerning the binding of Escherichia coli DNA-dependent RNA polymerase to DNA at high and at low DNA concentrations, using the filter retention assay. The basis hypotheses, under which the mathematical expressions for describing the kinetics of binding are derived, are as follows. (a) At low DNA concentration: equivalence and independence of the specific binding sites; first-order dependence of the binding reaction on both DNA and protein concentration. (b) At high DNA concentration: equivalence and independence of the non-specific binding sites; no direct transfer or one-dimensional sliding of the protein along the DNA. Comparison between theoretical predictions and experimental results at high DNA concentration will allow one to determine the relative value of the rates of binding of RNA polymerase to different promoters (between 1 and 2 in T5 DNA). Binding experiments performed at low DNA concentration are reported in this paper: these results and the analysis which is reported allow one to determine the value of the rate constant of formation of non-filterable complexes for the system fd DNA (replicative form) . RNA-polymerase (kappa a = 3.3 X 10(8) M-1 s-1 in 0.1 M NaCl, 0.01 M MgCl2).  相似文献   

5.
We have purified and characterized a single-stranded DNA binding protein (N4 SSB) induced after coliphage N4 infection. It has a monomeric molecular weight of 31,000 and contains 10 tyrosine and 1-2 tryptophan amino acid residues. Its fluorescence spectrum is dominated by the tyrosine residues, and their fluorescence is quenched when the protein binds single-stranded DNA. Fluorescence quenching was used as an assay to quantitate binding of the protein to single-stranded nucleotides. The N4 single-stranded DNA binding protein binds cooperatively to single-stranded nucleic acids and binds single-stranded DNA more tightly than RNA. The binding involves displacement of cations from the DNA and anions from the protein. The apparent binding affinity is very salt-dependent, decreasing as much as 1,000-fold for a 10-fold increase in NaCl concentration. The degree of cooperativity (omega) is relatively independent of salt concentration. At 37 degrees C in 0.22 M NaCl, the protein has an intrinsic binding constant for M13 viral DNA of 3.8 x 10(4) M-1, a cooperativity factor omega of 300, and binding site size of 11 nucleotides per monomer. The protein lowers the melting point of poly(dA.dT).poly(dA-dT) by greater than 60 degrees C but cannot lower the melting transition or assist in the renaturation of natural DNA. N4 single-stranded DNA binding protein enhances the rate of DNA synthesis catalyzed by the N4 DNA polymerase by increasing the processivity of the N4 DNA polymerase and melting out hairpin structures that block polymerization.  相似文献   

6.
Structural transition in chromatin induced by ions in solution   总被引:4,自引:3,他引:1       下载免费PDF全文
Structural transition in chromatin was measured as a function of counter ions in solution (NaCl or MgCl(2)) and of histones bound on the DNA. The addition of counter ions to aqueous solutions of chromatin, partially dehistonized chromatin, and DNA caused a drastic reduction in viscosity and a significant increase in sedimentation coefficient. Transitions occurred primarily at about 2 x 10(-3) M NaCl and 1 x 10(-5) M MgCl(2) and are interpreted as a change in structure of chromatin induced by tight binding of cations (Na(+) or Mg(++)) to DNA, either free or bound by histones, and is an intrinsic property of DNA rather than of the type of histone bound. At a given ionic condition, removal of histone H1 from chromatin had only a minor effect on the hydrodynamic properties of chromatin while removal of other histones caused a drastic change in these properties. An increase in the sedimentation coefficient of DNA was observed also for protamine. DNA complexes wherein the bound protein contains only unordered coil rather than the alpha-helices found in histones.  相似文献   

7.
We used a molecular beacon (MB) containing a 15-mer triplex-forming oligonucleotide (TFO) to probe in real-time the kinetics of triplex DNA formation in the left side of the TCl tract (502-516) of the c-src proto-oncogene in vitro. The metal ions Na+, K+, and Mg2+ stabilized triplex DNA at this site. The pseudo-first-order rate constant (kpsi) and the second-order association rate constant (k1) for the binding of the MB to the target duplex in 10 mM sodium phosphate buffer, pH 7.3, increased from 3.2 +/- 0.9 to 15 +/- 2.8 x 10(-3) s(-1) and 6.4 +/- 1.8 to 30 +/- 5.6 x 102 M(-1) s(-1), respectively, on increasing the MgCl2 concentration from 1 to 2.5 mM. Similar values were obtained for the triplex DNA stabilized by NaCl (100-250 mM). Surprisingly, the values were around 2 times higher in the presence of KCl. The AG of triplex formation in the presence of 1 mM MgCl2, 150 mM NaCl, and 150 mM KCl were -7.8 +/- 0.3, -8.2 +/- 0.3 and -8.7 +/- 0.7 kcal/mol respectively, despite significant differences in the values of deltaH and deltaS, suggesting enthalpy-entropy compensation in the stabilization of the triplex DNA by these metal ions. These results show the utility of MBs ih probing triplex DNA formation and in evaluating kinetic and thermodynamic parameters important for the design and development of TFOs as triplex DNA-based therapeutic agents.  相似文献   

8.
Biogenic polyamines, such as putrescine, spermidine, and spermine are small organic polycations involved in numerous diverse biological processes. These compounds play an important role in nucleic acid function due to their binding to DNA and RNA. It has been shown that biogenic polyamines cause DNA condensation and aggregation similar to that of inorganic cobalt(III)hexamine cation, which has the ability to induce DNA conformational changes. However, the nature of the polyamine.DNA binding at the molecular level is not clearly established and is the subject of much controversy. In the present study the effects of spermine, spermidine, putrescine, and cobalt(III)hexamine on the solution structure of calf-thymus DNA were investigated using affinity capillary electrophoresis, Fourier transform infrared, and circular dichroism spectroscopic methods. At low polycation concentrations, putrescine binds preferentially through the minor and major grooves of double strand DNA, whereas spermine, spermidine, and cobalt(III)hexamine bind to the major groove. At high polycation concentrations, putrescine interaction with the bases is weak, whereas strong base binding occurred for spermidine in the major and minor grooves of DNA duplex. However, major groove binding is preferred by spermine and cobalt(III)hexamine cations. Electrostatic attractions between polycation and the backbone phosphate group were also observed. No major alterations of B-DNA were observed for biogenic polyamines, whereas cobalt(III)hexamine induced a partial B --> A transition. DNA condensation was also observed for cobalt(III)hexamine cation, whereas organic polyamines induced duplex stabilization. The binding constants calculated for biogenic polyamines are K(Spm) = 2.3 x 10(5) M(-1), K(Spd) = 1.4 x 10(5) M(-1), and K(Put) = 1.02 x 10(5) M(-1). Two binding constants have been found for cobalt(III)hexamine with K(1) = 1.8 x 10(5) M(-1) and K(2) = 9.2 x 10(4) M(-1). The Hill coefficients indicate a positive cooperativity binding for biogenic polyamines and a negative cooperativity for cobalt(III)hexamine.  相似文献   

9.
The effect of the organophosphoric inhibitor, SA-152, on the fibrinogen-coagulating and TAME-esterase activity of bovine alpha-thrombin was studied. The irreversible inhibition constants (k11 = 1.1 x 10(4) M-1.min-1,Ki = 0.7 x 10(-4) M, k2 = 0.8 min-1 towards the coagulating activity and kII = 0.7 x 10(4) M-1.min-1, Ki = 0.3 x 10(-4) M, k2 = 0.2 min-1 towards the esterase activity) were determined. The SA-152 inactivated alpha-thrombin was dialyzed and incubated with 0.5 M and 2.5 M NaCl and 10 mM TAME. There was no reconstitution of activity of the SA-152 modified alpha-thrombin after dialysis and treatment with high concentrations of NaCl and TAME. Heparin interactions with the anion-binding site of the high molecular weight recognition center in the alpha-thrombin molecule did not significantly influence the values of the kinetic constants for the enzyme inhibition by SA-152. This finding is consistent with the hypothesis on the irreversible binding of SA-152 in the active center of the enzyme.  相似文献   

10.
A bacteriophage (phiYS40) infectious to an extreme thermophile, Thermus thermophilus HB8, was isolated and characterized. phiYS40 grows over the temperature range of 56 to 78 C, and the optimum growth temperature is about 65 C. The phage had a latent period of 80 min and a burst size of about 80 at 65 C. The phage has a hexagonal head 0.125 mum in diameter, a tail 0.178 mum long and 0.027 mum wide, a base plate and tail fibers. The phage is thermostable in broth but rather unstable in a buffer containing 10 mM Tris, 10 mM MgCl2, pH 7.5. The addition of Casamino Acids (1 percent), polypeptone (0.8 percent), yeast extract (0.4 percent), NaCl (0.1 M) or spermidine (1 mM) to the buffer restores the thermostability of phiYS40 to the same degree as in broth. The phage is also thermostable in water of the hot spring from which this phage was isolated. The nucleic acid of PhiYS40 is a double-stranded DNA and has a molecular weight of 1.36 X 10-8. The guanine plus cytosine content of the DNA was determined to be about 35 percent from chemical determinations, buoyant density (1.693 g/cm-3 in CsCl), and melting temperature (83.5 C in 0.15 M NaCl plus 0.015 M sodium citrate).  相似文献   

11.
Specific interaction of histone H1 with eukaryotic DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of calf thymus histone H1 with homologous and heterologous DNA has been studied at different ionic strengths. It has been found that about 0.5 M NaCl histone H1, and its fragments N-H1 (residues 1-72) and C-H1 (residues 73-C terminal), precipitate selectively a small fraction of calf thymus DNA. This selective precipitation is preserved up to very high values (less than 2.0) of the input histone H1/DNA ratio. The percentage of DNA insolubilized by histone H1 under these ionic conditions is dependent upon the molecular weight of the nucleic acid, diminishing from 18% fro a Mw equals 1.0 x 10(7) daltons to 5% for a Mw equals 8.0 x 10(4) daltons. The base composition of the precipitated DNA is similar to that of the bulk DNA. Calf thymus histone H1 also selectively precipitates a fraction of DNA from other eukaryotes (herring, trout), but not from some prokaryotes (E. coli, phage gamma. On the other hand, at 0.5 M NaCl, the whole calf thymus DNA (but not E. coli DNA) presents a limited number of binding sites for histone H1, the saturation ratio histone H1 bound/total DNA being similar to that found in chromatin. A similar behavior is observed from the histone H1 fragments, N-H1 and C-H1, which bind to DNA in complementary saturation ratios. It is suggested that in eukaryotic organisms histone H1 molecules maintain specific interactions with certain DNA sequences. A fraction of such specific complexes could act as nucleation points for the high-order levels of chromatin organization.  相似文献   

12.
Iu S Babaian 《Biofizika》1991,36(1):35-38
The interaction of antitumoral drug mitoxantrone with DNA of the tumor sarcoma 45 and healthy animals liver has been investigated according to the character of changes on the absorption spectra at binding at 30 degrees C and 0.11 M NaCl. The investigation shows that the interaction of mitoxantrone with DNA of sarcoma 45 differs from that with DNA of healthy animals liver. The calculations show that the saturation stoichiometry by both DNA is one mitoxantrone molecule per 2.5 base pairs with the binding constant k = 4 x 10(5) M-1 (for binding mitoxantrone with liver DNA) and k = 3 x 10(6) M-1 (with tumor DNA). Possible reason of such a difference is discussed on the basis of structural peculiarities of tumor DNA.  相似文献   

13.
Wolin, M. J. (University of Illinois, Urbana). Lysis of Vibrio succinogenes by ethylenediaminetetraacetic acid or lysozyme. J. Bacteriol. 91:1781-1786. 1966.-Cell suspensions of Vibrio succinogenes are lysed by ethylenediaminetetraacetic acid (EDTA) or lysozyme. Lysis occurs at alkaline pH and is prevented by 0.15 m NaCl or KCl or 0.3 m sucrose. The addition of 10(-3)m Mg(++), 10(-3)m spermine, or 10(-2)m Ca(++) prevents lysozyme lysis, and 10(-4)m spermine prevents EDTA lysis. EDTA lysis leads to the formation of a cell ghost, and lysozyme lysis leads to the formation of an empty round body. Freezing and thawing of cells permits lysozyme attack which is not prevented by the protective agents mentioned above. Much of the cell protein, and almost all of the nucleic acids, are released from the cells during EDTA lysis. Treatment of frozen-thawed cells with lysozyme at neutral pH does not cause release of more than 50% of the cell protein and 60% of the nucleic acids of the cells.  相似文献   

14.
Characterization of mammalian heterogeneous nuclear ribonucleoprotein complex protein A1 is reported after large-scale overproduction of the protein in Escherichia coli and purification to homogeneity. A1 is a single-stranded nucleic acid binding protein of 320 amino acids and 34,214 Da. The protein has two domains. The NH2-terminal domain is globular, whereas the COOH-terminal domain of about 120 amino acids has low probability of alpha-helix structure and is glycinerich. Nucleic acid binding properties of recombinant A1 were compared with those of recombinant and natural proteins corresponding to the NH2-terminal domain. A1 bound to single-stranded DNA-cellulose with higher affinity than the NH2-terminal domain peptides. Protein-induced fluorescence enhancement was used to measure equilibrium binding properties of the proteins. A1 binding to poly (ethenoadenylate) was cooperative with the intrinsic association constant of 1.5 X 10(5) M-1 at 0.4 M NaCl and a cooperativity parameter of 30. The NH2-terminal domain peptides bound noncooperatively and with a much lower association constant. With these peptides and with intact A1, binding was fully reversed by increasing [NaCl]; yet. A1 binding was much less salt-sensitive than binding by the NH2-terminal domain peptides. A synthetic polypeptide analog of the COOH-terminal domain was prepared and was found to bind tightly to poly-(ethenoadenylate). The results are consistent with the idea that the COOH-terminal domain contributes to A1 binding through both cooperative protein-protein interaction and direct interaction with the nucleic acid.  相似文献   

15.
By treatment with tRNA in the presence of 1 mM MgCl2, a chromatin preparation was obtained containing all five major histone fractions but lacking a considerable portion of non-histone proteins. This chromatin preparation as well as chromatin extracted with 0.6 M NaCl (depleted of H1 histone and some non-histone proteins) were characterized in respect of solubility and chromatin DNA accessibility. Both samples possessed practically the same solubility in the presence of 0.15 M NaCl and 1 mM MgCl2. The solubility of tRNA-treated chromatin in 5 and 10 mM MgCl2 was higher than that of salt-extracted chromation. The accessibility of the DNA of these chromatin preparations was tested with DNA-dependent RNA polymerase of Escherichia coli as a probe, using procedure that permits measurement of binding site frequency. Both tRNA-treated and salt-extracted chromatin contained as many as 33% and untreated chromatin as few as 4% of the number of binding sites found on protein-free DNA. These results demonstrate that at least in part the non-histone proteins are responsible for salt-induced insolubility and low DNA accessibility of chromatin, thus revealing the importance of non-histone proteins in the maintenance of an overall chromatin structure.  相似文献   

16.
N-Methyl isatin beta-thiosemicarbazone-copper complexes interact with nucleic acids and proteins as shown by ultraviolet (UV) and visible spectroscopy and Sephadex exclusion chromatography. The Cu++ ions are most effective; Co++ ions have less albeit significant activity. Chelating agents, such as Tris and histidine, high NaCl concentration, and dimethyl sulfoxide reduce the binding of the drug-metal complex. The binding constant of the drug-copper complex to calf-thymus DNA was calculated to range between 6.9 x 10(4) and 2.7 x 10(5) M-1.  相似文献   

17.
Ca2+-binding of S-100 protein was studied using a Ca2+ electrode at pH 6.80. In the presence of 0.1 M KCl and 10 mM MgCl2 (ionic strength 0.13), Ca2+-binding to S-100 protein occurred in three steps with positive cooperativity. The numbers of bound Ca2+ ions in the three steps were 2, 2, and 4. The Ca2+-binding constants were 6.9 x 10(3) M-1, 2.9 x 10(3) M-1, and 3.7 x 10(2) M-1, respectively. The Ca2+-binding constants of the first and second steps obtained in the presence of 33.3 mM MgCl2 or 0.1 M KCl (ionic strength 0.10) were 1.4 times larger than those described above. This suggests that Mg2+ does not inhibit Ca2+-binding of S-100 protein. The increase of KCl concentration from 0.1 to 0.2 M caused a decrease of the Ca2+-binding constants to ca. 50%.  相似文献   

18.
P Koski  M Vaara 《Journal of bacteriology》1991,173(12):3695-3699
Extraction of whole cells of Salmonella typhimurium and Escherichia coli with 1 M NaCl released 8 to 13% of their total cellular polyamines (putrescine, cadaverine, and spermidine). This extraction did not cause significant cell lysis, release of outer membrane (OM) constituents, or leakage of periplasmic beta-lactamase. The extraction released nearly equal amounts of polyamines from mdo (membrane-derived oligosaccharide) mutants and wild type. These findings suggest that the released polyamines are apparently bound to the cell envelope. NaCl (1 M) was as effective as trichloroacetic acid in releasing polyamines from isolated OM and lipopolysaccharide (LPS). Isolated OM contained four times more polyamines than the cytoplasmic membrane. The increased binding to the OM is apparently due to the association of polyamines with the polyanionic LPS. Nearly identical amounts of polyamines were found in the OM and LPS preparations (as quantified per milligram of LPS). These amounts are equal to those released from the intact cells by 1 M NaCl (quantitation as above). However, redistribution of polyamines took place after cell disruption, because the relative proportions of different polyamines varied in the OM and LPS preparations. These results indicate that polyamines released from intact cells during 1 M NaCl extraction are preferentially derived from the OM.  相似文献   

19.
Using the DNA filter binding assay, the effects of ionic strength and pH on SV40 T-antigen interaction with viral DNA were studied. The apparent association constants for T-antigen binding to SV40 DNA in Scatchard coordinates in the presence of 40 mM NaCl are equal to 0.67 . 10(6) M-1 (pH 6.0) and 0.86 x 10(7) M-1 (pH 7.4). These data indicate that the interaction between T-antigen and SV40 DNA is more specific at pH 7.4. The coincident values of association constants for T-antigen binding to viral and cellular DNAs (Ka = 0.9 x 10(7) M-1 for cellular DNA) at pH 7.4 and the absence of competition between the two DNA species upon binding with T-antigen suggest that viral and cellular DNAs possess similar sites for T-antigen binding. Denatured DNA competes with viral DNA only at pH 6.0, when the T-antigen--SV40 DNA interaction is less specific.  相似文献   

20.
Isolation of the Escherichia coli nucleoid   总被引:4,自引:0,他引:4  
Numerous protocols for the isolation of bacterial nucleoids have been described based on treatment of cells with sucrose-lysozyme-EDTA and subsequent lysis with detergents in the presence of counterions (e.g., NaCl, spermidine). Depending on the lysis conditions both envelope-free and envelope-bound nucleoids could be obtained, often in the same lysate. To investigate the mechanism(s) involved in compacting bacterial DNA in the living cell, we wished to isolate intact nucleoids in the absence of detergents and high concentrations of counterions. Here, we compare the general lysis method using detergents with a procedure involving osmotic shock of Escherichia coli spheroplasts that resulted in nucleoids free of envelope fragments. After staining the DNA with DAPI (4',6-diamidino-2-phenylindole) and cell lysis by either isolation procedure, free-floating nucleoids could be readily visualized in fluorescence microscope preparations. The detergent-salt and the osmotic-shock nucleoids appeared as relatively compact structures under the applied ionic conditions of 1 M and 10 mM, respectively. RNase treatment caused no dramatic changes in the size of either nucleoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号