首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high concentration (50 μg/ml) of gamma-linolenic acid (GLA) induced morphological lesions typical of apoptosis, as well as DNA fragmentation, in HeLa cells. A lower concentration of GLA (20 μg/ml), caused an increased proliferating cell nuclear antigen (PCNA) labelling, with 92.7% cells positive, compared to 27.7% at a concentration of 50 μg/ml GLA. In correlation with these results, the number of cells with degraded DNA below the G0/G1 peak increased significantly in the 50 μg/ml GLA-treated cells, but increased only slightly in cells exposed to the lower level of GLA. The high levels of PCNA induced by 20 μg/ml GLA, in both G1 and S phases, may indicate a state of DNA repair synthesis, whilst at the higher concentration of GLA, most of the cells became apoptotic. Since apoptosis is associated with the deregulation of c-Myc expression, and as the Raf-1-MAP kinase cascade activates the expression of c-Myc and c-Jun, we investigated the effects of 20 and 50 μg/ml GLA on the Raf-1, c-Myc and c-Jun levels, and on the activity of MAP kinase. The results showed that 50 μg/ml GLA lowered the activity of MAP kinase. As expected with the decreased MAP kinase activity in the cells exposed to the higher level GLA, the c-Jun levels were also lowered. The levels of c-Myc, however, were increased. It is therefore possible that the deregulated expression of c-Myc in the HeLa cells exposed to the high level of GLA (50 μg/ml) may contribute to the induction of apoptosis in HeLa cells.  相似文献   

2.

Purpose

Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.

Methods

Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.

Results

Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (siRNA targeting BIP and CHOP) methods, the induction of BIP, PDI, IRE1a, and LC3-II was blocked, but PARP cleavage was markedly enhanced.

Discussion

Taken together, these results suggested that sodium butyrate-induced autophagy was mediated by endoplasmic reticulum stress, and that preventing autophagy by blocking the endoplasmic reticulum stress response enhanced sodium butyrate-induced apoptosis. These results provide novel insights into the anti-tumor mechanisms of butyric acid.  相似文献   

3.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

4.
A new method was developed for selective measurement of DNA distributions in viable cell populations. The method is based on the fact that non-viable cells lose membrane integrity and treatment of such cells with DNase should remove their DNA. The DNase-treated cells were stained with DNA fluorochrome 4′-6-diamidino-2-phenylindole (DAPI) in the presence of Triton X-100. DNA distribution was measured by flow cytometry prior to and after treatment with DNase. Percentage of cells stained after DNase treatment was considered as an index of cell viability. Optimal conditions for DNase treatment and application of DNase exclusion test for the analysis of spontaneous cell death, selective death of cells arrested in S/G2 phases, instant cell disintegration induced by cytotoxic compounds and cell death induced by hyperthermia are described.  相似文献   

5.
2′-deoxy-5-ethynyluridine (EdU) has been previously shown to be a cell poison whose toxicity depends on the particular cell line. The reason is not known. Our data indicates that different efficiency of EdU incorporation plays an important role. The EdU-mediated toxicity was elevated by the inhibition of 2′-deoxythymidine 5′-monophosphate synthesis. EdU incorporation resulted in abnormalities of the cell cycle including the slowdown of the S phase and a decrease in DNA synthesis. The slowdown but not the cessation of the first cell division after EdU administration was observed in all of the tested cell lines. In HeLa cells, a 10 μM EdU concentration led to the cell death in the 100% of cells probably due to the activation of an intra S phase checkpoint in the subsequent S phase. Our data also indicates that this EdU concentration induces interstrand DNA crosslinks in HeLa cells. We suppose that these crosslinks are the primary DNA damage resulting in cell death. According to our results, the EdU-mediated toxicity is further increased by the inhibition of thymidylate synthase by EdU itself at its higher concentrations.  相似文献   

6.
1. Ornithine decarboxylase activity is stimulated in high-density HeLa-cell cultures by dilution of or replacement of spent culture medium with fresh medium containing 10% (v/v) horse serum. 2. After stimulation, ornithine decarboxylase activity reaches a peak at 4–6h, then rapidly declines to the low enzyme activity characteristic of quiescent cultures, where it remains during the remainder of the cell cycle. 3. The stimulation of ornithine decarboxylase is eliminated by the addition of 0.5μm-spermine or -spermidine or 10μm-putrescine to the HeLa-cell cultures at the time of re-feeding with fresh medium. Much higher concentrations (1mm) of the non-physiological diamines, 1,3-diamino-propane or 1,3-diamino-2-hydroxypropane, are required to eliminate the stimulation of ornithine decarboxylase in re-fed HeLa-cell cultures. 4. A heat-labile, non-diffusible inhibitor, comparable with the inhibitory protein ornithine decarboxylase antizyme, is induced in HeLa cells by the addition of exogenous diamines or polyamines. 5. Intracellular putrescine is eliminated, intracellular spermidine and spermine are severely decreased and proliferation of HeLa cells is inhibited when cultures are maintained for 48h in the presence of the non-physiological inducer of ornithine decarboxylase antizyme, 1,3-diamino-2-hydroxypropane. Exogenous putrescine, a physiological inducer of the antizyme, does not decrease intracellular polyamines or interfere with proliferation of HeLa cells.  相似文献   

7.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

8.

Background

This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation.

Results

A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation.

Conclusion

This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.  相似文献   

9.
Previous studies have shown that treatment of cultured fibroblasts with millimolar concentrations of sodium butyrate results in increased methylation of cytosine residues in DNA. In this study, active nucleosomes were fractionated from the inactive ones by organomercurial agarose column chromatography. DNA in each fraction was hydrolyzed to its constituent bases and subjected to HPLC analysis in order to determine the 5-methylcytosine content. In control cells, the active nucleosomal DNA was hypomethylated (0.97 ± 0.27% 5-methylcytosine) when compared with the inactive DNA fraction (1.61 ± 0.15%). This result was not unexpected since DNA hypermethylation is generally associated with gene inactivation. Treatment of cells with sodium butyrate, however, resulted in increased methylation of the active nucleosomal DNA such that it was comparable to that of the inactive fraction of control cells (1.73 ± 0.02% 5-methylcytosine). A much smaller increase in 5-methylcytosine content was detected in the inactive DNA fraction of sodium butyrate-treated cells (from 1.61 to 1.89%). Removal of the sodium butyrate followed by a chase in butyrate-free medium for up to 120 h failed to reverse the butyrate-induced hypermethylation. Reversal was achieved only after continuous culture in butyrate-free medium for 10 days.  相似文献   

10.
The rapid hypotonic staining procedure developed by Krishan for DNA determinations by flow cytofluorometry has been proven accurate for in vivo cell samples and for cell lines growing in suspension culture. We show that the unmodified procedure may produce distorted DNA histograms when used for staining cells growing in monolayer cultures, however. To eliminate these distortions, it was necessary to avoid the use of trypsin by staining the attached cells directly, using a hypotonic fluorochrome solution to which nonionic detergent was added. Two sublines of HeLa S3 cells are shown to exhibit major differences in their staining characteristics. By using our revised staining procedure, the two sublines appear to produce very satisfactory DNA histograms. However, in only one subline does the S phase fraction calculated from the histograms agree with the autoradiographical labeling index. Mitotic cells remain intact under these staining conditions, and the principal observed effect of nonionic detergents in this case is to decrease the coefficient of variation of fluorescence intensity.  相似文献   

11.
The effect of two radioprotective agents (WR-1065 and WR-151326) was tested for their ability to modify cell cycle progression. Each protector was administered at a concentration of 4 mmol to exponentially growing cultures of V79 cells for periods of time up to 3 h. Under these conditions no cell toxicity was observed. At selected times up to and after removal of the protector, aliquots of cells were removed, counted and fixed in cold 70% ethanol. the cells were stained with DAPI in a 0.1% citrate solution and DNA histograms were obtained using a PARTEC PAS-II flow cytometer. the coefficient of variation of the G1 peaks obtained for unperturbed cell samples routinely ranged from 1.5 to 2.5%. During exposure, both radioprotectors effectively perturbed cell cycle progression, as characterized by a build-up of cells in S and G2 phases. After the protectors were removed, cells began to redistribute throughout the cell cycle. Twelve hours were required before cells exposed to WR-1065 approached levels commensurable with controls. In contrast, cells treated with WR-151236 required about 24 h to redistribute to control levels. These data demonstrate that different thiol-containing radioprotective compounds can differentially affect the progression and redistribution of exposed cells.  相似文献   

12.

Background  

Cytometric measurements of DNA content and chromatin-bound Mcm2 have demonstrated bimodal patterns of expression in G1. These patterns, the replication licensing function of Mcm proteins, and a correlation between Mcm loading and cell cycle commitment for cells re-entering the cell cycle, led us to test the idea that cells expressing a defined high level of chromatin-bound Mcm6 in G1 are committed - i.e., past the G1 restriction point. We developed a cell-based assay for tightly-bound PCNA (PCNA*) and Mcm6 (Mcm6*), DNA content, and a mitotic marker to clearly define G1, S, G2, and M phases of the cell cycle. hTERT-BJ1, hTERT-RPE-1, and Molt4 cells were extracted with Triton X-100 followed by methanol fixation, stained with antibodies and DAPI, then measured by cytometry.  相似文献   

13.
The ectopic production of the glycopeptide hormone human placental choriogonadotropin by HeLa65 cells was measured by radioimmunoassay with antiserum against the β-subunit of choriogonadotropin and with the 125I-labelled β-subunit as a tracer antigen. Choriogonadotropin synthesis was markedly (500-fold) stimulated by sodium butyrate. Kinetic studies and the use of an inhibitor of protein synthesis, cycloheximide, indicated that protein synthesis was required for this induction. Investigation of the efficiency of 22 aliphatic short-chain fatty acids and derivatives in causing increased choriogonadotropin synthesis by HeLa cells showed stringent structural requirements. Induction of choriogonadotropin synthesis in HeLa cells was not restricted to butyrate. Other aliphatic acids (propionate, isobutyrate, valerate and hexanoate) were also capable of inducing choriogonadotropin synthesis at 10–50% of the efficiency of butyrate. Hydroxy derivatives of monocarboxylate inducers, related mono- and di-carboxylic acids, alcohols, amines, ketones, esters and sulphoxide were ineffective in increasing choriogonadotropin production by HeLa cells. A saturated C4 straight-chain acid without substituent hydroxyl groups but with a methyl group at one end and a carboxyl moiety at the other appeared to be most efficient in activating choriogonadotropin production. A second clonal line of HeLa cells, HeLa71, showed a higher constitutive synthesis of choriogonadotropin than HeLa65 cells, which was also markedly increased by butyrate. Butyrate and other aliphatic monocarboxylate inducers of choriogonadotropin synthesis inhibited HeLa-cell growth and DNA synthesis. This inhibition of DNA replication may be related to the mechanism of choriogonadotropin synthesis, since two well-characterized anti-neoplastic inhibitors of DNA synthesis, hydroxyurea and 1-β-d-arabinofuranosylcytosine, also stimulated a 300-fold increase in choriogonadotropin synthesis in HeLa cells and were synergistic with butyrate in promoting choriogonadotropin synthesis. Thus activation in tumour cells of genes normally expressed by foetal tissue and the consequent ectopic synthesis of polypeptide hormones may require neither cell division nor DNA synthesis.  相似文献   

14.
15.
The gene for the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT) is expressed at a low level in many cells. As is the case with several other “housekeeping genes,” thorough studies of hprt gene regulation have been hampered by the low levels of its mRNA. We have used RNA/RNA hybridization in solution to determine the concentration of hprt-RNA in human cells. The sensitivity and specificity of the method have been validated, and it is shown that hprt-RNA can be accurately determined at a level of a few mRNA molecules per cell. As expected for a housekeeping gene, low and relatively constant hprt-RNA levels (0.3–0.8 pg/μg DNA) were found in primary cultures of normal amnion cells and fibroblasts, EBV-transformed lymphoblastoid cell lines, neuroblastoma, glioblastoma, and melanoma cell cultures. While resting lymphocytes were found to contain very low amounts of hprt-RNA, lymphocytes stimulated with phytohemagglutinin (PHA) showed a 10-fold increase to about 0.8–1.2 pg/μg DNA, which corresponds to 6–10 hprt-RNA molecules per cell. The level started to increase about 20 h after PHA stimulation, 5–10 h before the onset of DNA synthesis, and a steady-state level was reached after 2–3 days in culture. In PHA-stimulated lymphocytes from two brothers with inherited HPRT deficiency (LeschNyhans syndrome), the hprt-RNA level in PHA-stimulated lymphocytes was only about 25% of that in normal subjects. In T-cells selected for HPRT deficiency by growth in 6-thioguanine medium, the levels of hprt-RNA were either normal or very low, which probably reflects the different nature of the mutations involved. These results demonstrate the sensitivity of this method for determinations of low levels of RNA and clearly show induction of hprt-RNA after mitogenic stimulation of human lymphocytes.  相似文献   

16.
Essentially every population of cancer cells within a tumor is heterogeneous, especially with regard to chemosensitivity and resistance. In the present study, we utilized the fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging system to investigate the correlation between cell-cycle behavior and apoptosis after treatment of cancer cells with chemotherapeutic drugs. HeLa cells expressing FUCCI were treated with doxorubicin (DOX) (5 μM) or cisplatinum (CDDP) (5 μM) for 3 h. Cell-cycle progression and apoptosis were monitored by time-lapse FUCCI imaging for 72 h. Time-lapse FUCCI imaging demonstrated that both DOX and CDDP could induce cell cycle arrest in S/G2/M in almost all the cells, but a subpopulation of the cells could escape the block and undergo mitosis. The subpopulation which went through mitosis subsequently underwent apoptosis, while the cells arrested in S/G2/M survived. The present results demonstrate that chemoresistant cells can be readily identified in a heterogeneous population of cancer cells by S/G2/M arrest, which can serve in future studies as a visible target for novel agents that kill cell-cycle-arrested cells.  相似文献   

17.
The HeLa cells were treated with 0, 0.01, 0.1, 1, 10 and 100 μM acyclovir (ACV) for 8 h duration and the growth kinetics, cell survival and micronuclei induction were determined. Treatment of HeLa cells with various concentrations of ACV resulted in a concentration-dependent decline in growth kinetics, cell proliferation indices and cell survival. ACV, 100 μM, completely inhibited cell division, where no appreciable changes in cell number were observed from 1 to 5 days post-treatment. This is reflected in cell survival, where the surviving fraction of cells was reduced to 1/2 at 100 μM ACV. Conversely, the frequency of micronuclei showed a concentration-dependent elevation at 20, 30 and 40 h post-treatment. ACV not only induced one micronuclei-bearing binucleate cell but also binucleate cells bearing two and multiple micronuclei in a concentration-dependent manner. The micronuclei frequency increased with time up to 30 h post-treatment and declined thereafter. The relationship between micronuclei induction and cell survival was determined by plotting the former on Y- and the latter on X-axes, respectively. The surviving fraction of cells declined with the elevation in micronuclei frequency and a best fit was observed for linear quadratic formalism.  相似文献   

18.
High-resolution flow cytometry of nuclear DNA in higher plants   总被引:6,自引:0,他引:6  
I. Ulrich  W. Ulrich 《Protoplasma》1991,165(1-3):212-215
Summary High-resolution flow cytometry of nuclear DNA in higher plants has been performed from chopped plant tissues and plant protoplasts. A preparation and staining procedure with the DNA specific fluorochrome DAPI, successfully employed for precise flow cytometric DNA analysis of animal and human cells has been used in a slightly modified manner for the DNA analysis of plant cell material. High-resolution DNA histograms coefficients of variation about 1–1.5% have been obtained routinely from plant species with different DNA content. Staining of nuclei with DAPI in combination with the protein fluorochrome sulforhodamine 101 allows bi-parametric analysis of nuclear DNA and protein. The described simple and precise method might be very promising for the analysis of DNA in basic and applied cytogenetic investigations of plant cell research.Abbreviations CV coefficient of variation - DAPI 4,6-diamidino-2-phenylindole - SR 101 sulforhodamine 101  相似文献   

19.
Granulosa cells isolated from immature Sprague-Dawley rat ovaries produce progesterone (31.7 pg/μg cell protein) in response to an acute FSH stimulus (5 μg/ml NIH-FSH-S11, 2 h). After culture for 48 h in the absence of hormones (control culture), progesterone production by the granulosa cells in response to FSH is significantly reduced (2.9 pg/μg cell protein). Cells cultured with prostaglandin E2 (PGE2, 1 μg/ml) or dibutyryl-cAMP (dbcAMP, 1 mM) exhibited a discernibly greater steroidogenic response to FSH (12.5 and 53.4 pg/μg cell protein, respectively) than that of control cultures. Therefore the presence of PGE2 or dbcAMP in the culture medium helps to maintain the steroidogenic capacity of granulosa cells in culture. It is probable that this capacity is maintained at a locus distal to the production of cAMP by FSH.Paradoxically, granulosa cells cultured with PGE2 produce less cAMP in response to FSH stimulation than cells in control cultures (15.9 250.3 fm/μg cell protein). This may be due to a suppressive effect of prior exposure to PGE2 on the subsequent activity of adenylate cyclase when the FSH is introduced and a concomitant elevation of phosphodiesterase activity.  相似文献   

20.
Levels of the glycoprotein hormone α subunit and alkaline phosphatase activity were increased in cultures of HeLa S3 cells exposed to aphidicolin (0.2–10 μg/ml) or phosphonoformic acid (0.1–3 mm), inhibitors of DNA polymerase α. Induction was dependent on both the concentration and duration of exposure to the inhibitors and was prevented by cycloheximide and actinomycin D. Limited characterization of the induced α subunit and alkaline phosphatase activity suggest that they are similar to the uninduced proteins expressed by this cell line. Induction of both proteins by aphidicolin and phosphonoformic acid was enhanced by the simultaneous addition of 3 mm sodium butyrate but was depressed by 1 mm hydroxy urea. In contrast, both butyrate and hydroxy urea cause induction of these proteins when added alone to HeLa cultures. It is unlikely that a direct relationship exists between protein induction and the inhibition of DNA synthesis produced by aphidicolin and phosphonoformic acid since the concentrations required to produce half-maximal induction are 5 to 10 times greater than those needed to inhibit replication by 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号