首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins containing the arginine analogue conavanine were degraded much more quickly in MRC-5 fibroblasts than those containing only normal amino acids. The degradation of both classes of protein could be well described by a pair of exponential curves, the first representing an early rapid degradation and the second, a slower phase. There were no general trends in the variation with passage number of the cell's ability to degrade either normal or analogue-containing proteins, as judged by the half-lives of proteins. But there was an increase in the proportion of labelled normal falling into the early rapid degradation phase as the cells senesced in culture  相似文献   

2.
The replication machinery, or the replisome, collides with a variety of obstacles during the normal process of DNA replication. In addition to damaged template DNA, numerous chromosome regions are considered to be difficult to replicate owing to the presence of DNA secondary structures and DNA-binding proteins. Under these conditions, the replication fork stalls, generating replication stress. Stalled forks are prone to collapse, posing serious threats to genomic integrity. It is generally thought that the replication checkpoint functions to stabilize the replisome and replication fork structure upon replication stress. This is important in order to allow DNA replication to resume once the problem is solved. However, our recent studies demonstrated that some replisome components undergo proteasome-dependent degradation during DNA replication in the fission yeast Schizosaccharomyces pombe. Our investigation has revealed the involvement of the SCFPof3 (Skp1-Cullin/Cdc53-F-box) ubiquitin ligase in replisome regulation. We also demonstrated that forced accumulation of the replisome components leads to abnormal DNA replication upon replication stress. Here we review these findings and present additional data indicating the importance of replisome degradation for DNA replication. Our studies suggest that cells activate an alternative pathway to degrade replisome components in order to preserve genomic integrity.  相似文献   

3.
Generalized increases in protein oxidation and protein degradation in response to mild oxidative stress have been widely reported, but only a few individual proteins have actually been shown to undergo selective, oxidation-induced proteolysis. Our goal was to find such proteins in Clone 9 liver cells exposed to hydrogen peroxide. Using metabolic radiolabeling of intracellular proteins with [35S]cysteine/methionine, and analysis by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we found at least three labeled proteins ("A," "B," and "C") whose levels were decreased significantly more than the generalized protein loss after mild oxidative stress. "Protein C" was excised from 2-D PAGE and subjected to N-terminal amino acid microsequencing. "Protein C" was identified as Protein Disulfide Isomerase or PDI (E.C. 5.3.4.1), and this identity was reconfirmed by Western blotting with a C-terminal anti-PDI monoclonal antibody. A combination of quantitative radiometry and Western blotting in 2-D PAGE revealed that PDI was selectively degraded and then new PDI was synthesized, following H2O2 exposure. PDI degradation was blocked by inhibitors of the proteasome, and by cell treatment with proteasome C2 subunit antisense oligonucleotides, indicating that the proteasome was largely responsible for oxidation-induced PDI degradation.  相似文献   

4.
5.
《Free radical research》2013,47(9):1013-1026
Abstract

Oxidized and cross-linked modified proteins are known to accumulate in ageing. Little is known about whether the accumulation of proteins modified by advanced glycation end products (AGEs) is due to an affected intracellular degradation. Therefore, this study was designed to determine whether the intracellular enzymes cathepsin B, cathepsin D and the 20S proteasome are able to degrade AGE-modified proteins in vitro. It shows that AGE-modified albumin is degraded by cathepsin D, while cathepsin B was less effective in the degradation of aldehyde-modified albumin and the 20S proteasome was completely unable to degrade them. Mouse primary embryonic fibroblasts isolated from a cathepsin D knockout animals were found to have an extensive intracellular AGE-accumulation, mainly in lysosomes, and a reduction of AGE-modified protein degradation compared to cells isolated from wild type animals. In summary, it can be assumed that cathepsin D plays a significant role in the removal of AGE-modified proteins.  相似文献   

6.
Peptide segments of multiple glycine and alanine residues prevent the proteolytic degradation of ubiquitinated proteins by the proteasome. The structure of a Gly/Ala-rich insert in IκBα was probed by nuclear magnetic resonance (NMR) spectroscopy, comparing IκBα samples with and without Gly/Ala-rich insert. Narrow 1H-NMR resonances at chemical shifts indicative of random coil conformations were observed in the difference spectrum. circular dichroism (CD) measurements further confirm that the mechanism of protection against proteolytic degradation is not based on structural transition or stabilization caused by the Gly/Ala-rich segment. In addition, most of the N- and C-terminal residues outside the ankyrin repeats in wild-type IκBα were found to be flexibly disordered.  相似文献   

7.
Protein degradation is an essential and strictly controlled process with proteasome and functionally related proteases representing its central part. Tricorn protease (TRI) has been shown to act downstream of the proteasome, degrading produced peptides. Recently, a novel large prokaryotic aminopeptidase oligomeric complex, named TET, has been identified. This complex degrades peptides of different length in organisms where TRI is not present. We determined the crystal structure of TET from the thermophilic archaeon Pyrococcus horikoshii at 1.6 A resolution in native form and in complex with the inhibitor amastatin. We demonstrate that, beside the novel tetrahedral oligomerisation pattern, TET possesses a unique mechanism of substrate attraction and orientation. TET sequentially degrades peptides produced by the proteasome to single amino acids. Furthermore, we reconstituted in vitro the minimal protein degradation system from initial unfolding of labelled protein substrates, up to release of free amino acids. We propose that TET and TRI act as functional analogues in different organisms, with TET being more widely distributed. Thus, TET and TRI represent two evolutionarily diverged pathways of peptide degradation in prokaryotes.  相似文献   

8.
F-box proteins: the key to protein degradation   总被引:4,自引:0,他引:4  
Summary The eukaryotic protein degradation pathway involves the ubiquitin (Ub) modification of substrates targeted for degradation by the 26S proteasome. The addition of Ub, a process called ubiquitination, is mediated by enzymes including the E3 Ub ligases which transfer the Ub to targeted substrates. A major type of E3 Ub ligases, the SCF (Skp–Cullin–F-box) complex, is composed of four major components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein. The F-box component of the SCF machineries is responsible for recognizing different substrates for ubiquitination. Interaction with components of the SCF complex is mediated through the F-box motif of the F-box protein while it associates with phosphorylated substrates through its second protein–protein interaction motif such as Trp–Asp (WD) repeats or leucine-rich repeats (LRRs). By targeting diverse substrates, F-box proteins exert controls over stability of proteins and regulate the mechanisms for a wide-range of cellular processes. Here we discuss the importance of F-box proteins by providing a general overview and examples of how F-box proteins function in various cellular settings such as tissue development, cell proliferation, and cell death, in the modeling organism Drosophila.  相似文献   

9.
Abstract In Neurospora crassa , heat shock treatment inhibits proteolytic activity. ATP-independent proteinases were analysed after polyacrylamide gel electrophoresis using renaturing gelatine gels. Proteinases of 24, 29, and 130 kDa were shown to be inhibited by heat shock and were further characterized as to their properties. A major part of the heat shock-induced inhibition is probably due to suppression of de novo synthesis of proteinases as deduced from experiments with cycloheximide. During several hours of recovery from heat shock, the inhibition of overall protein degradation and ATP-independent proteinases is reversed. Azocasein assays as well as pulse-chase experiments further showed that ATP-dependent protein degradation is only slightly affected by heat shock. Two ATP-binding proteinases of about 60 and 160 kDa even show an increased activity after heat shock. The degradation rate of heat shock proteins is inhibited by heat shock treatment, indicating that they are degraded by ATP-independent proteinases. Western blot analysis of a ∼40-kDa degradation product of HSP70 containing its amino terminal portion revealed a reduction in the amount of this peptide after heat shock.  相似文献   

10.
Mutant K-Ras and survivin both contribute to oncogenesis, but little is known about K-Ras requirement for the maintenance of the high levels of survivin in human tumors. Here we demonstrate that K-Ras depletion significantly decreases survivin levels in human cancer cells that harbor mutant but not wild type K-Ras. K-Ras depletion attenuates both basal and drug-induced survivin levels. The mechanism by which K-Ras depletion decreases survivin levels is through ubiquitination and proteasomal degradation of survivin and is independent of survivin-Thr-34 phosphorylation. Depletion of RalA and RalB, but not Raf-1, Akt1 and Akt2, decreases survivin levels, suggesting that K-Ras may regulate survivin stability through its RalGDS/Ral but not PI3K/Akt and Raf-1/Mek effector pathways. Furthermore, the ability of mutant K-Ras to induce anchorage-independent growth, invasion and survival is compromised by depletion of survivin. These studies suggest that mutant K-Ras contributes to the maintenance of the aberrantly high levels of survivin in tumors by regulating its stability, and that the ability of mutant K-Ras to induce malignant transformation is, at least in part, dependent on these high levels of survivin.  相似文献   

11.
《Autophagy》2013,9(10):1500-1508
Eukaryotes have two major intracellular protein degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Inhibition of proteasomal activities has been previously shown to induce autophagy, indicating a coordinated and complementary relationship between these two systems. However, little is known about the regulation of the UPS by autophagy. In this study, we showed for the first time that proteasomes were activated in response to pharmacological inhibition of autophagy as well as disruption of autophagy-related genes by RNA interference under nutrient-deficient conditions in cultured human colon cancer cells. The induction was evidenced by the increased proteasomal activities and the upregulation of proteasomal subunits, including the proteasome β5 subunit, PSMB5. Co-inhibition of the proteasome and autophagy also synergistically increased the accumulation of polyubiquitinated proteins. Collectively, our findings suggest that proteasomes are activated in a compensatory manner for protein degradation upon autophagy inhibition. Our studies unveiled a novel regulatory mechanism between the two protein degradation pathways.  相似文献   

12.
According to the free radical theory of aging proposed by Denham Harman (Journal of Gerontology 1956, 11, pp. 298-300), the continuous oxidative damage to cellular components over an organism's life span is a causal factor of the aging process. The age-related build-up of oxidized protein is therefore resulting from increased protein oxidative damage and/or decreased elimination of oxidized proteins. In this mini-review, we will address the fate, during aging, of the protein maintenance systems that are involved in the degradation of irreversibly oxidized proteins and in the repair of reversible protein oxidative damage with a special focus on the methionine sulfoxide reductases system. Since these protein degradation and repair systems have been found to be impaired with age, it is proposed that not only failure of redox homeostasis but, as importantly, failure of protein maintenance are critical factors in the aging process.  相似文献   

13.
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or ‘dead-end’ state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.  相似文献   

14.
We purified the 20S proteasome from the alga Chara corallina Willd with DEAE–ion‐exchange column chromatography and preparative nondenaturing PAGE. The analysis of the purified enzyme bynondenaturing PAGE gave a single band whose molecular mass was estimated to be about 600,000 Da by gel permeation chromatography and whose isoelectric point was at pH 5.5. Two‐dimensional gel electrophoresis gave at least 12 spots with molecular masses from 26,000 to 32,000 Da in a wide range of isoelectric points. The 20S proteasome hydrolyzed three types of artificial substrates used to differentiate chymotrypsin‐like, trypsin‐like, and peptidyl glutamyl peptidase activities. Both the chymotrypsin‐like and the peptidyl glutamyl peptidase activities were enhanced by SDS. In the presence of 0.03% SDS, the optimal pH for both activities was 8.5. Trypsin‐like activity of the 20S proteasome had a broad pH optimum in an alkaline region and was not activated but inhibited by SDS. Its chymotrypsin‐like activity was inhibited by N‐ethylmaleimide, p‐chloromercuribenzoic acid, and chymostatin. In contrast, its peptidyl glutamyl peptidase activity was not inhibited by chymostatin. Moreover, proteasome inhibitors MG 115 and MG 135 were effective against the chymotrypsin‐like activity and less so against the peptidyl glutamyl peptidase activity. These properties were very similar to those of the proteasomes of mammalian, yeast, and spinach cells. The large size of Chara cells will make in vivo manipulations and investigations of the proteasome proteolytic system possible.  相似文献   

15.
如何识别和选择性降解蛋白质是细胞生命过程中的重要环节.泛素-蛋白酶体需能降解途径的发现,揭示了蛋白质在细胞内选择性降解的普遍方式.对于需要清除的蛋白质,通过其赖氨酸残基侧链ε-氨基连接多聚泛素链(降解标签),继而在蛋白酶体中被降解.这种选择性降解机制对于维持蛋白质在细胞内含量的动态平衡起到了关键性作用.  相似文献   

16.
Ubiquitin (Ub) is a small protein (8 kDa) found in all eukaryotic cells, which is conjugated covalently to numerous proteins, tagging them for recognition by a downstream effector. One of the best characterized functions of Ub is targeting proteins for either selective degradation by the proteasome, or for bulk degradation by the autophagy-lysosome system. The executing arm of the UPS is the 26S proteasome, a large multicatalytic complex. While much is known about the synthesis and assembly of the proteasome's subunits, the mechanism(s) underlying its removal has remained obscure, similar to that of many other components of the ubiquitin-proteasome system. Our recent study identified autophagy as the degrading mechanism for the mammalian proteasome, mostly under stress conditions. Amino acid starvation induces specific ubiquitination of certain 19S proteasomal subunits that is essential for its binding to SQSTM1/p62, the protein that shuttles the ubiquitinated proteasome to the autophagic machinery. SQSTM1 delivers ubiquitinated substrates for proteasomal degradation via interaction of its PB1 domain with the 19S proteasomal subunit PSMD4/Rpn10, in situations where the proteasome serves as a “predator." In contrast, we found that the UBA domain of SQSTM1 is essential for its interaction with the ubiquitinated proteasome and its delivery to the autophagosome, rendering the proteasome a “prey.”  相似文献   

17.
Proteins of IMR-90 fibroblasts incorporating [35S]methionine during a 1 h labelling period in the presence of the arginine analogue canavanine were degraded twice as rapidly in the cells as were proteins similarly made in the presence of arginine. Using both isoelectric focusing and SDS-polyacrylamide gel electrophoretic analyses, the banding patterns of proteins labelled in the presence of canavanine and arginine were found to differ. This banding difference was detected as early as 15 min after canavanine treatment. With the exception of one minor band in isoelectric focusing gel, the relative intensity of labelled protein bands for the control samples remained unchanged during the 2 h period of protein degradation being investigated. This was also true for the proteins labelled in the presence of canavanine, despite the increase in their rate of degradation. Banding difference between canavanine and arginine treatment was also detected in an in vitro reticulocyte lysate translation system dependent on fibroblast mRNA. Proteins labelled in the presence of a different analogue, p-fluorophenylalanine instead of phenylalanine, however, had similar banding patterns as the control both in the lysate system and in intact cells.  相似文献   

18.
Puromycyl peptides were degraded in MRC5 fibroblasts more rapidly than normal proteins labelled for the corresponding length of time for both long and short labelling periods. The degradation of the puromycyl peptides occurred almost exclusively in the cytosol of the cells. Even when the half-lives of normal and puromycyl peptides were manipulated to be similar, proportionally more of the normal proteins were degraded in the lysosomes. The rapid degradation of the puromycyl peptides was not due to the inhibition of protein synthesis brought about by puromycin but was due to the structure of the substrates themselves. The degree and intracellular site of degradation of puromycyl peptides closely mimic those of abnormal (missense) proteins containing amino acid analogues.  相似文献   

19.
20.
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
Highlights
  • •Quantitative proteomics of isolated lysosomes, autophagosomes and proteasomes.
  • •Pharmacological inhibition of proteasomes leads to their accumulation within lysosomes.
  • •Inhibition of classical autophagy pathways cannot completely block this process.
  • •Known autophagy adaptor proteins are not involved.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号