首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The inhibitory action of vanadate towards protein tyrosine phosphatase (PTPase) has been considered as a probable mechanism by which it exerts insulin-like effects. In this study, we have examined thein vivo effects of vanadate on PTPases in the liver of obese Zucker rats, a genetic animal model for obesity and type II diabetes. These animals were characterized by hyperinsulinemia and mild hyperglycemia. The number of insulin receptors were significantly (p<0.01) decreased in liver. After chronic administration of vanadate in obese rats, 80% decrease in the plasma levels of insulin was observed. The insulin receptor numbers were significantly (p<0.01) higher in vanadate-treated obese rats as compared to the untreated ones. The hepatic PTPase activities in cytosolic and particulate fractions, with phosphorylated poly glu:tyr (41) and the insulin receptor peptide (residues 1142–1153) as substrates, increased in obese rats. In vanadate-treated obese rat livers, the PTPase activities in both subcellular fractions with these substrates decreased significantly (p<0.001). The decreases in PTPase activities from these groups of rats were further supported by chromatography on a Mono Q column. These data support the view that inhibition of PTPases plays a role in the insulin-mimetic action of vanadate.  相似文献   

3.
Correlation of the changes in phosphorylase a concentration with the synthase phosphatase velocity in a glycogen particle preparation in the presence of EDTA revealed that the initial synthase phosphatase rate was greatest in extracts from glucose-treated rats and least in extracts from glucagon-treated rats. In all cases the velocity increased with time and with a decrease in phosphorylase a. However, a threshold release of phosphatase activity when phosphorylase a reached a critical level was not observed. The data are compatible with either an independent regulation of synthase phosphatase by glucose and glucagon or regulation of the activity by phosphorylase over a range of phosphorylase a concentrations.  相似文献   

4.
Alterations in both calcitonin (CT) secretion and plasma calcium were recently described in adult obese Zucker rats. We have investigated the CT biosynthetic activity of thyroid glands in 30-day-old obese Zucker rats (fa/fa), and their controls (Lean). Plasma calcium level was significantly increased (+0.6 mg/dl) in obese animals, but plasma phosphate was unchanged. Plasma CT levels measured by radioimmunoassay (RIA) were significantly decreased in fatty (0.50 +/- 0.03 vs 0.68 +/- 0.03 ng/ml in Leans; P less than 0.001), but thyroidal hormone content was not different between Lean and fatty rats (68.7 +/- 5.1 in Leans vs 60.5 +/- 3.6 ng/gland in fatty rats). mRNA was extracted from 10 thyroids, and translated in a rabbit reticulocyte lysate (NEN) in the presence of [35S]methionine. After polyacrylamide gel electrophoresis, specific immunoprecipitates were autoradiographed and quantified by integration. A 50% decrease in translatable CT mRNA was observed in fatty rats. In basal conditions, the biosynthetic activity of C cells in obese rats correlates with the secretion rate of the hormone in the face of unchanged thyroidal CT contents.  相似文献   

5.
Glycogen synthase activation and phosphorylase inactivation by glucose were studied in hepatocytes isolated from fed or overnight-fasted lean or genetically obese (fa/fa) rats. In cells from fed animals, both the time course and dose-response to glucose of synthase activation were the same in both groups, despite higher levels of phosphorylase a in hepatocytes from obese animals. In contrast, in cells from fasted obese animals synthase activation with or without glucose was enhanced severalfold over that of lean controls, despite similar levels of phosphorylase a and of total (a + b) synthase activities. In both nutritional conditions glucose 6-phosphate concentrations were 2-3-fold higher in obese-rat hepatocytes than in lean-rat cells. In addition, synthase activation was transient in the fasted lean group, but was sustained in obese-rat hepatocytes. The rate of synthase activation was, however, comparable in lean- and obese-rat liver Sephadex G-25 filtrates, irrespective of the nutritional state of the donor rats. It is concluded that enhanced synthase activation in hepatocytes from starved obese rats might be due to an unbalanced synthase interconversion brought about by elevated glucose 6-phosphate concentrations and impaired kinase [van de Werve & Massillon (1990) Biochem. J. 269, 795-799], rather than to an intrinsic change in synthase phosphatase.  相似文献   

6.
7.
The obese (fa/fa) Zucker rat shows an impaired sympathetic tone which is accompanied by an altered thermogenesis and changes in both lipid and carbohydrate metabolism. In this work, we have investigated the regulatory effects of epinephrine on the rate of gluconeogenesis from a mixture of [(14)C]lactate/pyruvate, in hepatocytes isolated from obese (fa/fa) rats and their lean (Fa/-) littermates. Epinephrine caused a dose-dependent stimulation of the rate of [(14)C]glucose formation in both obese and lean rat hepatocytes, the maximal rates being five- and twofold higher than the corresponding basal values (0.50 +/- 0.06 and 1.96 +/- 0.15 micromol of lactate converted to glucose/g of cell x 20 min, respectively). No significant differences were found between the calculated half-maximal effective concentrations (EC(50)) for epinephrine in obese and lean rat liver cells. The stimulation of gluconeogenesis by epinephrine was accompanied by a decrease in the cellular concentration of fructose 2,6-bisphosphate, and an inactivation of both pyruvate kinase and 6-phosphofructo 2-kinase, to similar extents in both types of hepatocytes. Epinephrine also significantly raised the hepatocyte content of cyclic AMP, with about a twofold increase at a saturating concentration of the catecholamine (1 microM), in both lean and obese rat liver cells. However, at suboptimal concentrations of epinephrine, the rise in cyclic AMP levels was significantly less marked in obese than in lean rat hepatocytes. Nevertheless, no significant differences were found in either the affinity or the number of beta-adrenergic receptors, in radioligand binding studies carried out in liver plasma membranes obtained from obese and lean Zucker rats. In conclusion, compared to the corresponding basal values, the response of gluconeogenesis from lactate to the stimulatory effect of epinephrine is higher in obese (fa/fa) than in lean (Fa/-) Zucker rat hepatocytes, with no significant differences in the calculated EC(50) values for this hormone. This occurs in spite of an apparent decreased sensitivity of the adenylate cyclase system to the stimulatory effect of epinephrine in obese rat liver cells.  相似文献   

8.
Secretion of calcitonin in the genetically obese Zucker rat (fa/fa)   总被引:1,自引:0,他引:1  
Previously we found that adult Zucker fatty rats have C-cell hyperplasia and increased thyroidal calcitonin (CT) compared to lean controls. In this study we have evaluated both secretion of CT and responsiveness to CT in order to see whether they, too, were altered. Fat rats and lean littermates, 13-15 months old, were used. CT secretion was provoked by (1) feeding for 2 hr after an 18-hr fast, (2) giving pentagastrin iv, and (3) injecting CaCl2 iv. CT was measured by radioimmunoassay. Responsiveness to CT was examined by giving porcine or salmon CT iv and measuring serum Ca 1-3 hr later. For CT secretion, compared to leans the fat rats showed (1) higher fasting serum Ca and CT and a greater rise in CT after feeding, (2) a similar 5- to 10-fold increase in CT after iv pentagastrin, and (3) a greater rise in both serum Ca and CT at various times between 5 min and 3 hr after iv CaCl2. For CT responsiveness, fat and lean rats were equally responsive to iv CT in terms of the fall in plasma Ca 1-3 hr later. The results show that fat rats can secrete as much or more CT in response to provocative stimuli as lean rats and that they appear normally responsive to injected CT. Therefore, inability to release CT and insensitivity to CT do not underly the C-cell hyperplasia, increased thyroidal CT, and increased circulating CT in the fat rat.  相似文献   

9.
Obesity is a risk factor for the development of chronic kidney disease (CKD) and end-stage renal disease. It is not clear whether the adoption of a high-protein diet in obese patients affects renal lipid metabolism or kidney function. Thus the aims of this study were to assess in obese Zuckerfa/fa rats the effects of different types and amounts of dietary protein on the expression of lipogenic and inflammatory genes, as well as renal lipid concentration and biochemical parameters of kidney function. Rats were fed different concentrations of soy protein or casein (20, 30, 45%) for 2 mo. Independent of the type of protein ingested, higher dietary protein intake led to higher serum triglycerides (TG) than rats fed adequate concentrations of protein. Additionally, the soy protein diet significantly increased serum TG compared with the casein diet. However, rats fed soy protein had significantly decreased serum cholesterol concentrations compared with those fed a casein diet. No significant differences in renal TG and cholesterol concentrations were observed between rats fed with either protein diets. Renal expression of sterol-regulatory element binding protein 2 (SREBP-2) and its target gene HMG-CoA reductase was significantly increased as the concentration of dietary protein increased. The highest protein diets were associated with greater expression of proinflammatory cytokines in the kidney, independent of the type of dietary protein. These results indicate that high soy or casein protein diets upregulate the expression of lipogenic and proinflammatory genes in the kidney.  相似文献   

10.
A detailed investigation was conducted to determine the precise subcellular localization of the rate-limiting enzymes of hepatic glycogen metabolism (glycogen synthase and phosphorylase) and their regulatory enzymes (synthase phosphatase and phosphorylase phosphatase). Rat liver was homogenized and fractionated to produce soluble, rough and smooth microsomal fractions. Enzyme assays of the fractions were performed, and the results showed that glycogen synthase and phosphorylase were located in the soluble fraction of the livers. Synthase phosphatase and phosphorylase phosphatase activities were also present in soluble fractions, but were clearly identified in both rough and smooth microsomal fractions. It is suggested that the location of smooth endoplasmic reticulum (SER) within the cytosome forms a microenvironment within hepatocytes that establishes conditions necessary for glycogen synthesis (and degradation). Thus the location of SER in the cell determines regions of the hepatocyte that are rich in glycogen particles. Furthermore, the demonstration of the association of synthase phosphatase and phosphorylase phosphatase with membranes of SER may account for the close morphological association of SER with glycogen particles (i.e., disposition of SER membranes brings the membrane-bound regulatory enzymes in close contact with their substrates).  相似文献   

11.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

12.
A method has been developed for the measurement of plasma concentrations of Beta-cell tropin (BCT), which is a potent insulinotropic and lipogenic peptide secreted by the pituitary. The method was employed to compare plasma Beta-cell tropin concentrations between lean and genetically obese (ob/ob) mice and between lean and genetically obese (fa/fa) Zucker rats. The plasma concentration in lean mice was 0.17 +/- 0.02 (5)nmole/l (mean +/- SEM, n = 5), while that in obese (ob/ob) mice was significantly higher, being 2.88 +/- 1.13 (5)nmole/l. The plasma BCT concentration in Zucker rats was 0.14 +/- 0.02 (15)nmole/l, while that in obese Zucker (fa/fa) rats was significantly higher, being 1.69 +/- 0.72 (16)nmole/l. These results explain previously observed differences in the Beta-cell tropin-like biological activity in plasma from lean and obese animals, and support the hypothesis that the peptide has a role in the development of hyperinsulinaemia and obesity.  相似文献   

13.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

14.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

15.
The effects of soybean-derived phospholipid, PIPS NAGASE(TM) (PIPS), on obesity-induced diseases were studied in obese rats. Dietary PIPS alleviated hepatomegaly and fatty liver in the rats. These effects were attributable to reduced lipogenesis and enhanced lipolysis in the liver. The results suggest that PIPS can be useful as a dietary component that would reduce the risk of lifestyle-related diseases.  相似文献   

16.
The global metabolite profiles of endogenous compounds excreted in urine by male Wistar-derived and Zucker (fa/fa) obese rats were investigated from 4 to 20 weeks of age using both 1H NMR spectroscopy and HPLC-TOF/MS with electrospray ionisation (ESI). Multivariate data analysis was then performed on the resulting data which showed that the composition of the samples changed with age, enabling age-related metabolic trajectories to be constructed. At 4 weeks it was possible to observe differences between the urinary metabolite profiles from the two strains, with the difference becoming more pronounced over time resulting in a marked divergence in their metabolic trajectories at 8-10 weeks. The changes in metabolite profiles detected using 1H NMR spectroscopy included increased protein and glucose combined with reduced taurine concentrations in the urine of the Zucker animals compared to the Wistar-derived strain. In the case of HPLC-MS a number of ions were found to be present at increased levels in the urine of 20 week old Zucker rats compared to Wistar-derived rats including m/z 71.0204, 111.0054, 115.0019, 133.0167 and 149.0454 (negative ion ESI) and m/z 97.0764 and 162.1147 (positive ion ESI). Conversely, ions m/z 101.026 and 173.085 (negative ion ESI) and m/z 187.144 and 215.103 (positive ion ESI) were present in decreased amounts in urine from Zucker compared to Wistar-derived rats. Metabolite identities proposed for these ions include fumarate, maleate, furoic acid, ribose, suberic acid, carnitine and pyrimidine nucleoside. The utility of applying metabonomics to understanding disease processes and the biological relevance of some of the findings are discussed.  相似文献   

17.
Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid–chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (p < 0.05) elevated in the highest dose group. There was a dose-dependent effect on body weight and plasma glucose levels. The highest dose group (n = 6) had significantly lower plasma glucose levels compared to the control group (n = 6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome.  相似文献   

18.
Plasma obtained from 20 week old normal Wistar-derived and Zucker (fa/fa) rats was analysed using a number of different analytical methodologies to obtain global metabolite profiles as part of metabonomic investigations of animal models of diabetes. Samples were analysed without sample pre-treatment using 1H NMR spectroscopy, after acetonitrile solvent protein precipitation by ultra-performance liquid chromatography-MS (UPLC-MS) and after acetonitrile protein precipitation and derivatisation for capillary gas chromatography-MS (GC-MS). Subsequent data analysis using principal components analysis revealed that all three analytical platforms readily detected differences between the plasma metabolite profiles of the two strains of rat. There was only limited overlap between the metabolites detected by the different methodologies and the combination of all three methods of metabolite profiling therefore provided a much more comprehensive profile than would have been provided by their use individually.  相似文献   

19.
20.
Compared with the lean(Fa/) genotype, obese(fa/fa) Zucker rats have arelative deficiency of muscle phospholipid arachidonate, and skeletalmuscle arachidonate in humans is positively correlated with insulinsensitivity. To assess the hypothesis that the positive effects ofexercise training on insulin sensitivity are mediated by increasedmuscle arachidonate, we randomized 20 lean and 20 obese weanling maleZucker rats to sedentary or treadmill exercise groups. After 9 wk,fasting serum, three skeletal muscles (white gastrocnemius, soleus, andextensor digitorum longus), and heart were obtained. Fasting insulinwas halved by exercise training in the obese rat. In whitegastrocnemius and extensor digitorum longus (fast-twitch muscles), butnot in soleus (a slow-twitch muscle) or heart, phospholipidarachidonate was lower in obese than in lean rats(P < 0.001). In all muscles,exercise in the obese rats reduced arachidonate(P < 0.03, by ANOVA contrast). Weconclude that improved insulin sensitivity with exercise in the obesegenotype is not mediated by increased muscle arachidonate and thatreduced muscle arachidonate in obese Zucker rats is unique tofast-twitch muscles.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号