首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within seconds of T cell receptor engagement, a well-characterized series of tyrosine phosphorylation events mediate cellular activation. It is widely accepted that these initial phosphorylations remain stable until protein tyrosine phosphatases return the cell to its basal level. Based on a model of peripheral blood T cell activation, in which the kinetics of phosphorylation can be modulated, we propose an alternate hypothesis that T cell signaling is highly dynamic. Our results demonstrate that tyrosine phosphorylation and dephosphorylation are occurring co-temporally after T cell receptor cross-linking, regulated by a delicate balance of kinases and phosphatases.  相似文献   

2.
Protein phosphorylation and hormone action   总被引:23,自引:0,他引:23  
Many key regulatory proteins exist in cells as either a phosphorylated or a dephosphorylated form, their steady-state levels of phosphorylation reflecting the relative activities of the protein kinases and protein phosphatases that catalyse the interconversion process. Phosphorylation of seryl or threonyl (and occasionally tyrosyl) residues triggers small conformational changes in these proteins that alter their biological properties. Hormones and other extracellular signals transmit information to the interior of the cell by activating transmembrane signalling systems that control the production of a relatively small number of chemical mediators, termed 'second messengers'. These substances regulate the activities of protein kinases and phosphatases, and so alter the phosphorylation states of many intracellular proteins, accounting for the diversity of action of hormones. In this lecture I review recent work which demonstrates that a wide variety of cellular processes are controlled by relatively few protein kinases and protein phosphatases with pleiotropic actions. These enzymes provide the basis of an interlocking network that allows extracellular signals to coordinate biochemical functions.  相似文献   

3.
Protein kinases and phosphatases are responsible for several cellular events mediated by protein phosphorylation and dephosphorylation. Among these events are cell growth and differentiation and cellular metabolism. Casein kinase I (CKI) and casein kinase II (CKII) are involved in the phosphorylation of several substrates. Endogenous protein phosphorylation and casein kinase activity were investigated in the megagametophyte of the native Brazilian conifer Araucaria angustifolia, during seed development. It was observed that a number of different polypeptides are phosphorylated in vitro in the three megagametophyte stages of development tested (from globular, cotyledonary and mature embryos, respectively) and the phosphate was incorporated mainly in serine residues. The use of okadaic acid and vanadate in the phosphorylation reactions increased phosphate incorporation in several polypeptides suggesting the presence of serine/threonine as well as tyrosine phosphatases in the megagametophyte. Also, the results obtained in experiments with CKII inhibitor, GTP as phosphate donor, RNA hybridizations, and in-gel kinase assays indicate the presence of CKII in the A. angustifolia megagametophyte.  相似文献   

4.
5.
Protein phosphorylation: hormones, drugs, and bioregulation   总被引:7,自引:0,他引:7  
S Shenolikar 《FASEB journal》1988,2(12):2753-2764
Reversible protein phosphorylation is widely recognized as an important mechanism for the regulation of cell function by a variety of physiological stimuli. Exposure of cells to hormones, neurotransmitters, and growth factors initiates a cascade of events facilitated by intracellular second messengers and mediated in many cases by protein kinases and/or phosphatases. The subsequent covalent modification of target proteins and the associated changes in their function account for the physiological response. Considerable evidence points to cross-talk between multiple membrane-associated signaling processes leading to coordinated regulation of cellular processes. The role of protein phosphorylation at multiple points in the pathways that integrate these signals is becoming increasingly apparent. Pharmacological modulation of cellular protein phosphorylation has yielded useful information on the molecular events involved. This review surveys some of the recent progress in hormonal regulation of cell function, focusing on examples that may provide new insight into the role of protein phosphorylation in the coordinated control of cellular processes by physiological stimuli.  相似文献   

6.
7.
Protein phosphorylation is an important mechanism that controls many cellular activities. Phosphorylation of a given protein is precisely controlled by two opposing biochemical reactions catalyzed by protein kinases and protein phosphatases. How these two opposing processes are coordinated to achieve regulation of protein phosphorylation is unresolved. We have developed a novel experimental approach to directly study protein dephosphorylation in cells. We determined the kinetics of dephosphorylation of insulin receptor substrate-1/2, Akt, and ERK1/2, phosphoproteins involved in insulin receptor signaling. We found that insulin-induced ERK1/2 and Akt kinase activities were completely abolished 10 min after inhibition of the corresponding upstream kinases with PD98059 and LY294002, respectively. In parallel experiments, insulin-induced phosphorylation of Akt, ERK1/2, and insulin receptor substrate-1/2 was decreased and followed similar kinetics. Our findings suggest that these proteins are dephosphorylated by a default mechanism, presumably via constitutively active phosphatases. However, dephosphorylation of these proteins is overcome by activation of protein kinases following stimulation of the insulin receptor. We propose that, during acute insulin stimulation, the kinetics of protein phosphorylation is determined by the interplay between upstream kinase activity and dephosphorylation by default.  相似文献   

8.
Phosphorylation is an effective method of post-translational protein modification but understanding its significance is hindered by its biological complexity. Many protein kinases and phosphatases have been identified that connect signal perception mechanisms to plant defence responses. Recent studies of mitogen-activated protein kinases, calcium-dependent protein kinases and other kinases and phosphatases have revealed some important mechanisms, but have also raised new questions. The regulation of any phosphorylation pathway is complex and dynamic. There are many protein kinases and phosphatases in the plant genome, which makes it hard to delineate the phosphorylation machinery fully. Genomics and proteomics have already identified new components and will continue to influence the study of phosphorylation profoundly in plant-pathogen interactions.  相似文献   

9.
Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology.Key words: protein tyrosine phosphorylation, kinases, phosphatases, proteomics, mass spectrometry, signaling  相似文献   

10.
11.
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.  相似文献   

12.
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.  相似文献   

13.
Reversible protein phosphorylation catalyzed by kinases and phosphatases is a major form of posttranslational regulation that plays a central role in regulating many signaling pathways. While large families of both protein kinases and protein phosphatases have been identified in plants, kinases outnumber phosphatases. This raises the question of how a relatively limited number of protein phosphatases can maintain protein phosphorylation homeostasis in a cell. Recent studies have shown that Arabidopsis FyPP1 (Phytochrome-associated serine/threonine protein phosphatase 1) and FyPP3 encode the catalytic subunits of protein phosphatase 6 (PP6), and that they directly binds to the A subunits of protein phosphatase 2A (PP2AA proteins), and SAL (SAPS domain-like) proteins to form the heterotrimeric PP6 holoenzyme complex. Emerging evidence is suggesting that PP6, acts in opposition with multiple classes of kinases, to regulate the phosphorylation status of diverse substrates and subsequently numerous developmental processes and responses to environmental stimuli.  相似文献   

14.
15.
16.
Bacteria use protein phosphorylation to regulate all kinds of physiological processes. Protein phosphorylation plays a role in several key steps of the infection process of bacterial pathogens, such as adhesion to the host, triggering and regulation of pathogenic functions as well as biochemical warfare; scrambling the host signaling cascades and impairing its defense mechanisms. Recent phosphoproteomic studies indicate that the bacterial protein phosphorylation networks could be more complex than initially expected, comprising promiscuous kinases that regulate several distinct cellular functions by phosphorylating different protein substrates. Recent advances in protein labeling with stable isotopes in the field of quantitative mass spectrometry phosphoproteomics will enable us to chart the global phosphorylation networks and to understand the implication of protein phosphorylation in cellular regulation on the systems scale. For the study of bacterial pathogens, in particular, this research avenue will enable us to dissect phosphorylation-related events during different stages of infection and stimulate our efforts to find inhibitors for key kinases and phosphatases implicated therein.  相似文献   

17.
Bacteria use protein phosphorylation to regulate all kinds of physiological processes. Protein phosphorylation plays a role in several key steps of the infection process of bacterial pathogens, such as adhesion to the host, triggering and regulation of pathogenic functions as well as biochemical warfare; scrambling the host signaling cascades and impairing its defense mechanisms. Recent phosphoproteomic studies indicate that the bacterial protein phosphorylation networks could be more complex than initially expected, comprising promiscuous kinases that regulate several distinct cellular functions by phosphorylating different protein substrates. Recent advances in protein labeling with stable isotopes in the field of quantitative mass spectrometry phosphoproteomics will enable us to chart the global phosphorylation networks and to understand the implication of protein phosphorylation in cellular regulation on the systems scale. For the study of bacterial pathogens, in particular, this research avenue will enable us to dissect phosphorylation-related events during different stages of infection and stimulate our efforts to find inhibitors for key kinases and phosphatases implicated therein.  相似文献   

18.
Protein phosphorylation is a key signalling mechanism and has myriad effects on protein function. Phosphorylation by protein kinases can be reversed by protein phosphatases, thus allowing dynamic control of protein phosphorylation. Although this may suggest a straightforward kinase–phosphatase relationship, plant genomes contain five times more kinases than phosphatases. Here, we examine phospho‐signalling from a protein phosphatase centred perspective and ask how relatively few phosphatases regulate many phosphorylation sites. The most abundant class of plant phosphatases, the protein phosphatase 2Cs (PP2Cs), is surrounded by a web of regulation including inhibitor and activator proteins as well as posttranslational modifications that regulate phosphatase activity, control phosphatase stability, or determine the subcellular locations where the phosphatase is present and active. These mechanisms are best established for the Clade A PP2Cs, which are key components of stress and abscisic acid signalling. We also describe other PP2C clades and illustrate how these phosphatases are highly regulated and involved in a wide range of physiological functions. Together, these examples of multiple layers of phosphatase regulation help explain the unbalanced kinase–phosphatase ratio. Continued use of phosphoproteomics to examine phosphatase targets and phosphatase–kinase relationships will be important for deeper understanding of phosphoproteome regulation.  相似文献   

19.
Reversible, light-dependent protein phosphorylation was observed in isolated thylakoid membranes of the cyanobacterium Synechococcus 6301. A polypeptide of 15 kDa in particular was phosphorylated under plastoquinone-reducing conditions and was not phosphorylated under plastoquinone-oxidising conditions. Phosphorylation and dephosphorylation reactions involving this and several other membrane polypeptides showed sensitivity to inhibitors of protein kinases and phosphatases. Changes in phosphorylation state correlated with changes in low temperature fluorescence emission characteristic of changes in excitation energy distribution between the photosystems. The 15 kDa phosphopolypeptide is likely to be involved directly in light state adaptations in cyanobacteria.  相似文献   

20.
The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin‐dependent kinase (Cdk) activity reaches its peak, the anaphase‐promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk‐counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号