首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultured human monocytes undergo a process of differentiation and maturation lasting 5 to 10 days that ultimately leads to the appearance of large macrophage-like cells. This differentiation is growth factor dependent: of all the cytokines tested, only macrophage colony-stimulating factor (M-CSF), granulocyte/macrophage-CSF (GM-CSF), and IL-3 proved capable of supporting the differentiation and the long term survival of the macrophage-like cells. Although all three cytokines yield cells with macrophage characteristics, cells developed in M-CSF have features distinct from those matured in either IL-3 or GM-CSF. At the morphologic level, the M-CSF-supported monocyte cultures yield elongated, spindle-shaped cells whereas those supported with IL-3 or GM-CSF yielded round cells with distinct nuclei. All three macrophage populations expressed similar levels of HLA-DR, CD11b, and CD11c, but the M-CSF-treated cultures yielded more CD14+ and CD16+ (Fc gamma RIII) cells. All three cell populations developed capacity for antibody-dependent cellular cytotoxicity (ADCC) as well as antibody-independent cytotoxicity with peak activity achieved after 8 to 12 days in culture. ADCC capacity developed earliest and the level of activity was usually greatest in the M-CSF-treated cultures, possibly correlating with the higher level of expression of CD16. Our findings indicate that any of these cytokines, but particularly M-CSF, may be useful clinically in enhancing the tumoricidal capacity of tumor-specific mAb through augmentation of macrophage capacity for ADCC.  相似文献   

2.
Enhancement of human monocyte tumoricidal activity by recombinant M-CSF   总被引:8,自引:0,他引:8  
Activated monocytes are an important component of immunologic defense against neoplastic disease. A variety of agents capable of inducing tumoricidal activity have been described, including bacterial LPS, IFN-gamma, IL-1, IL-2, TNF, and GM-CSF. We now show that pretreatment of monocytes with recombinant human macrophage-specific colony stimulating factor (M-CSF) augments the tumoricidal activity of human peripheral blood monocytes induced by other activating agents. Monocytes were preincubated for three days with M-CSF at 10(3) U/ml, washed, and treated for an additional two days with secondary activators. Tumoricidal activity was measured in a 6-h 51Cr-release assay using NK-resistant WEHI 164 cells that had been treated with actinomycin D. Pretreatment of monocytes with M-CSF significantly increased tumoricidal activity induced by LPS, IFN gamma, LPS plus IFN gamma, and LPS plus PMA. Pretreatment with IL-1, IL-2, IL-3, IL-4, or GM-CSF was not as effective as M-CSF in increasing tumoricidal activity. Enhanced tumoricidal activity was directly correlated to the increased TNF production resulting from M-CSF pretreatment. TNF antiserum completely blocked tumoricidal activity, demonstrating that TNF was responsible for the M-CSF-mediated increase in tumor cell lysis. M-CSF pretreatment also enhanced non-TNF mediated tumoricidal activity by monocytes, as seen by increased killing of the TNF-resistant target P815. This study demonstrated that in addition to the role of M-CSF in the proliferation and differentiation of monocyte/macrophage precursors, M-CSF also augments an effector function of mature blood monocytes.  相似文献   

3.
不同诱导因子对人外周血单个核细胞P2X7受体表达的作用   总被引:4,自引:0,他引:4  
Zhang XJ  Zheng GG  Ma XT  Lin YM  Song YH  Wu KF 《生理学报》2005,57(2):193-198
ATP激活P2X7受体可产生一系列的白细胞功能反应,因此P2X7受体的表达调控引起我们的兴趣。然而P2X7受体在正常人外周血单个核细胞(peripheral blood mononuclear cells,PBMC)、单核细胞中的表达调控机制尚未阐明。本文用半定量RT-PCR方法检测多种细胞因子、细菌抗原、丝裂原对P2X7受体表达的诱导作用,探索P2X7受体的诱导表达模式。结果表明,单个核细胞和单核细胞可检出P2X7受体的表达;白细胞介素2、4、6(interleukin-2、-4、-6,IL-2、IL-4、IL-6)、肿瘤坏死因子仪(tumour necrosis factor-α,TNF-α)等细胞因子和金黄色葡萄球菌CowanⅠ株(Staphylococcus aureus Cowan strainⅠ,SAC)、脂多糖(lipopolysaccharide,LPS)能上调PBMC的P2X7受体表达,而γ干扰素(interferon-γ,IFN-γ)、粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)、巨噬细胞集落刺激因子(macmphage colony-stimulating factor,M-CSF)和植物血凝素(phytohemagglutinin-M,PHA-M)等则没有作用;LPS和M-CSF可以提高单核细胞的P2X7受体表达,IFN-γ、TNF-α、GM-CSF作用较弱,但是这些因子的预处理并不能增强LPS对P2X7受体表达的诱导。炎症因子促进P2X7受体的表达,提示P2X7受体可能在对抗细菌感染的免疫反应中起一定作用,这有待于进一步研究。  相似文献   

4.
Human monocytes express two types of IgG FcR, Fc gamma RI and Fc gamma RII. These can be assayed by using indicator E sensitized by human IgG (EA-human IgG) or mouse IgG1, (EA-mouse IgG1), respectively. On mouse macrophages, Fc gamma RI is sensitive to trypsin, whereas Fc gamma RII is trypsin resistant. We studied the effects of the proteolytic enzymes pronase and trypsin on human monocyte Fc gamma R. Neither enzyme caused a decrease in rosetting mediated by monocyte Fc gamma RI. Human Fc gamma RII is polymorphic, and monocytes interact either strongly or weakly with mouse IgG1. The interaction of low responder monocytes with mouse IgG1 was dramatically increased (to the level exhibited by high responder monocytes) by protease treatment. The effects of proteases on Fc gamma RII were investigated in more detail by using monocytes from which Fc gamma RI was selectively modulated by using immobilized immune complexes. Proteolysis of such modulated monocytes induced an increased interaction with EA-human IgG. Fc gamma RII appears to mediate this interaction. This conclusion is supported by the observation that after proteolysis, the Fc gamma RII-mediated binding of EA-mouse IgG1 becomes susceptible to inhibition by (monomeric) human IgG. To quantify the effect of proteolytic enzymes on Fc gamma RII, we performed binding studies with cell line K562, that expresses only Fc gamma RII. A significant increase in Ka of Fc gamma RII for dimeric human IgG complexes was observed when K562 cells were treated with protease. To elucidate the mechanism of this enhancement of Ka by proteolysis, we performed immunoprecipitation studies. Neither m.w., nor IEF pattern of Fc gamma RII were influenced by proteolysis. Moreover, the expression of Fc gamma RII was not affected by proteolysis as evidenced by immunofluorescence studies and Scatchard analysis, and neither were Fc gamma RI or Fc gamma RIII induced. We conclude that proteolysis increases the affinity of Fc gamma RII for human IgG, and speculate that such a proteolysis-induced change may also occur in vivo, e.g., at inflammatory sites.  相似文献   

5.
TREM-1 (triggering receptor expressed on myeloid cells-1) is an orphan immunoreceptor expressed on monocytes, macrophages, and neutrophils. TREM-1 associates with and signals via the adapter protein DAP12/TYROBP, which contains an ITAM. TREM-1 activation by receptor cross-linking has been shown to be proinflammatory and to amplify some cellular responses to TLR ligands such as bacterial LPS. To investigate the cellular consequences of TREM-1 activation, we have characterized global gene expression changes in human monocytes in response to TREM-1 cross-linking in comparison to and combined with LPS. Both TREM-1 activation and LPS up-regulate chemokines, cytokines, matrix metalloproteases, and PTGS/COX2, consistent with a core inflammatory response. However, other immunomodulatory factors are selectively induced, including SPP1 and CSF1 (i.e., M-CSF) by TREM-1 activation and IL-23 and CSF3 (i.e., G-CSF) by LPS. Additionally, cross-talk between TREM-1 activation and LPS occurs on multiple levels. Although synergy in GM-CSF protein production is reflected in commensurate mRNA abundance, comparable synergy in IL-1beta protein production is not. TREM-1 activation also attenuates the induction of some LPS target genes, including those that encode IL-12 cytokine family subunits. Where tested, positive TREM-1 outputs are greatly reduced by the PI3K inhibitor wortmannin, whereas this attenuation is largely PI3K independent. These experiments provide a detailed analysis of the cellular consequences of TREM-1 activation and highlight the complexity in signal integration between ITAM- and TLR-mediated signaling.  相似文献   

6.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   

7.
GM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF. Only 17% of genes regulated differently by these CSFs were common across the species. Whether a particular change in relative gene expression is by direct action of a CSF can be confounded by endogenous mediators, such as type I IFN, IL-10, and activin A. Time-dependent differences in cytokine gene expression were noted in human monocytes treated with the CSFs; in this system, GM-CSF induced a more dramatic expression of IFN-regulated factor 4 (IRF4) than of IRF5, whereas M-CSF induced IRF5 but not IRF4. In the presence of both CSFs, some evidence of "competition" at the level of gene expression was observed. Care needs to be exercised when drawing definitive conclusions from a particular in vitro system about the roles of GM-CSF and M-CSF in macrophage lineage biology.  相似文献   

8.
M Matsumura  N Banba  S Motohashi  Y Hattori 《Life sciences》1999,65(12):PL129-PL135
Monocytes and T-lymphocytes, both of which play a pivotal role in immune/inflammatory responses, can be attracted from the circulation into tissues by monocyte chemoattractant protein-1 (MCP-1), and monocytes can be further activated by colony-stimulating factors (CSFs), granulocyte/macrophage CSF (GM-CSF) or macrophage CSF (M-CSF). We examined whether either interleukin-6 (IL-6) or transforming growth factor-beta (TGF-beta), both of which are produced by thyroid follicular cells (TFC), can regulate the production of MCP-1 or CSF(s) in human TFC. IL-6, being effective only in the presence of soluble IL-6 receptor (sIL-6R), stimulated the expression of both MCP-1 and M-CSF, but was inhibitory on GM-CSF expression. On the other hand, TGF-beta stimulated the expression of both MCP-I and GM-CSF, but suppressed M-CSF expression. These results suggest a possible role of IL-6 or TGF-beta on the initiation and/or modulation of thyroid immune/inflammatory responses via MCP-1 production and differential production of GM-CSF or M-CSF by TFC.  相似文献   

9.
The cytokines macrophage colony-stimulating factor (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) promote differentiation of monocytes into macrophages with distinct phenotypes and unique functional abilities. In this report, we characterize how monocytes and macrophages differentiated from monocytes with M-CSF and GM-CSF regulate their cGMP levels by controlling which phosphodiesterases (PDEs) and guanylyl cyclases (GCs) are expressed. We find that PDE1B and PDE2A are expressed at low levels in monocytes, but are the major cGMP PDEs expressed in macrophages. M-CSF differentiation triggers increased expression of PDE1B and PDE2A, while GM-CSF causes a large increase only in PDE1B. Based on PDE expression, we identified THP-1 and U937 cell lines as possible models for studying the roles of PDE1B and PDE2A in macrophage function. We additionally characterized changes in expression of GCs upon differentiation. We found that GM-CSF differentiation triggers a small decrease in soluble guanylyl cyclase (sGC) and a large increase in GC-A, while M-CSF significantly decreases sGC.  相似文献   

10.
We previously reported that activation of the phosphatidylinositol (PI) 3-kinase pathway was important in M-CSF-induced monocyte survival. Because M-CSF also induces activation of the mitogen-activated protein (MAP) kinase extracellular-regulated kinase (Erk), we focused on dissecting the mechanism used by M-CSF to induce Erk activation in human monocytes. We found that, in addition to the MAP/Erk kinase inhibitor PD098059, the PI 3-kinase inhibitors LY294002 and wortmannin both suppressed Erk activation in M-CSF-treated monocytes, suggesting that 3-phosphorylated products of PI 3-kinase played a role in Erk activation. Investigating the biochemical pathways regulated by PI 3-kinase to activate Erk, we found that, in response to M-CSF, normal human monocytes induced reactive oxygen species (ROS), which were suppressed by the PI 3-kinase inhibitor wortmannin but not by the solvent control DMSO or the MAP/Erk kinase inhibitor PD098059. We next found that, in the absence of M-CSF, ROS could induce Erk activation in human monocytes. Exogenous H(2)O(2) induced Erk activation in human monocytes, which was suppressed by exogenous catalase. To determine whether ROS induced by M-CSF played a role in Erk activation, we found that N-acetylcysteine and diphenyleneiodonium both suppressed Erk activation in M-CSF-treated monocytes. Erk activation by M-CSF also seemed to play a role in cellular survival in monocytes. These data suggest that, in M-CSF-stimulated human monocytes, PI 3-kinase products and ROS production play a role in Erk activation and monocyte survival.  相似文献   

11.
Unconjugated monoclonal antibodies (mAb) kill tumor cells in vivo by activating immune functions. One of these is ADCC (antibody-dependent cellular cytotoxicity). The efficacy of mAbs might be augmented if the cytotoxic capacity of the effector cells could be increased. In this study the augmenting effect of granulocyte-colony-stimulating factor (G-CSF), granulocyte/macrophage(GM)-CSF and macrophage(M)-CSF was analyzed. Effector cells [peripheral blood mononuclear cells (PBMC) or granulocytes] were activated for 4–6 h by the respective CSF and assayed in an 18-h Cr51-release assay. Human colorectal, lymphoma, glioma and melanoma cell lines were target cells. Mouse mAbs of different isotypes, as well as chimeric and humanized mAbs, were used. mAbs having the human Fc part of the IgG molecule were the most effective. The killing capacity of PBMC as well as of granulocytes was statistically significantly enhanced when mAbs were added. M-CSF and GM-CSF were the best CSF for augmenting the lytic capacity of PBMC in ADCC. G-CSF had no significant effect on PBMC. Spontaneous cytolysis of PBMC was significantly augmented only by M-CSF. Granulocytes were, in general, significantly less effective than PBMC but may be equally effective killer cells together with mouse or human mAbs of the IgG1 isotype, particularly against melanoma cells. Granulocytes may also be significantly stimulated to increased lytic capacity when activated with G-CSF or GM-CSF. On the basis of the present evaluation, clinical trials in tumor patients are warranted, combining mAbs with GM-CSF or M-CSF. Preference might be given to GM-CSF as this cytokine activates both PBMC and granulocytes.  相似文献   

12.
13.
14.
We previously demonstrated that IL-10 alone does not stimulate growth and differentiation of human monocytes, but enhances those of monocytes stimulated with M-CSF. We studied here the effect of IL-10 on human monocytes stimulated with GM-CSF. Monocytes stimulated with GM-CSF alone survived and developed into macrophages. Monocytes cultured with GM-CSF plus IL-10, however, died through apoptosis. IL-10 decreased expression of bcl-2, bcl-x(L), and mcl-1- but not bax mRNA in monocytes stimulated with GM-CSF. IL-10 did not change the expression of mRNA of both GM-CSFR alpha-chain and beta-chain, but inhibited tyrosine phosphorylation of STAT5 and extracellular signal-regulated kinases 1 and 2 in the monocytes. The inhibitory effect of IL-10 was restricted to treatment 48 h after stimulation with GM-CSF. Addition of IL-10 after that time induced neither apoptosis nor a decrease in expression of bcl-2, bcl-x(L), and mcl-1 mRNA. IL-10, however, inhibited LPS-induced TNF-alpha production even in these cells, indicating that the cells still possessed responsiveness to IL-10. Monocytes pretreated for >48 h with GM-CSF became resistant to GM-CSF withdrawal, and the cells could survive without GM-CSF. These results indicate that IL-10 selectively inhibits GM-CSF-dependent monocyte survival by inhibiting the signaling events induced by GM-CSF, but the timing of addition of IL-10 is critical, and IL-10 had to be added within 48 h after stimulation with GM-CSF to achieve the inhibitory effect. These results taken together with our previous results indicate that IL-10 plays a pivotal role in monocyte survival and development into macrophages in concert with M-CSF and GM-CSF.  相似文献   

15.
In this report we present evidence that not all human peripheral blood monocytes mediate antibody-dependent cellular cytotoxicity (ADCC), and that this function may be determined on an individual cell by both the type and level of expression of FcR, and by the state of cellular activation and/or differentiation. Although the diverse range of effector and regulatory functions performed by human monocytes suggests the possibility of distinct subsets, it is not clear whether observed functional heterogeneity reflects the presence of true monocyte subpopulations, or whether this diversity represents a continuum of maturational states present in the peripheral circulation. In an attempt to address this question, we investigated the ability of human monocytes to carry out ADCC at the single cell level, with emphasis on the role of the three FcR for IgG (Fc gamma RI, Fc gamma RII, and Fc gamma RIII) in mediating cytotoxicity. Using a modified plaque assay, 58.3% +/- 4.9 of freshly isolated monocytes mediated ADCC, as evidenced by the formation of lytic plaques in monolayers of ox erythrocyte (oxE) target cells. Significant increases in the number of plaque-forming cells were observed after positive selection by flow microfluorimetry for those monocytes expressing high levels of Fc gamma RI and Rc gamma RII, but not Fc gamma RIII. Bispecific antibodies composed of Fab fragments of anti-oxE antibody covalently coupled to Fab fragments of anti-Fc gamma R antibodies were used to independently evaluate the ability of Fc gamma RI, Fc gamma RII, and Fc gamma RIII to mediate single cell cytotoxicity. Significant increases in the number of plaque-forming cells were observed in the presence of anti-Fc gamma RI x anti-oxE and anti-Fc gamma RII x anti-oxE bispecific antibodies, confirming the efficiency of Fc gamma RI and Fc gamma RII as cytotoxic trigger molecules on human monocytes. Incubation of monocytes with purified rIFN-gamma and granulocyte macrophage-CSF, but not IL-2, IL-3, IL-4, IL-6, or TNF-alpha, also resulted in significant increases in the number of monocytes mediating cytotoxicity, suggesting that cytotoxic ability at the single cell level may be influenced by factors which effect monocyte activation and differentiation, respectively. Overall, these studies demonstrate that freshly isolated human monocytes are heterogeneous in their ability to mediate ADCC, and suggest that this functional diversity arises not from discrete subpopulations of cells, but from a continuum of maturational/activational states present within the peripheral circulation.  相似文献   

16.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

17.
We recently identified defective monocyte accessory function as the cause of T cell unresponsiveness to the mitogenic activity of OKT3 antibody in cultures of peripheral blood mononuclear cells (PBMC) from five healthy subjects, members of one family. We now report that the underlying abnormality in nonresponders is at the level of monocyte Fc gamma receptors for murine IgG2a. T cell unresponsiveness was not restricted to the signal provided by OKT3 but occurred also for two other anti-T3 antibodies of the IgG2a subclass, in contrast to a normal proliferative response to IgG1 anti-T3 antibodies in one of the OKT3 nonresponders. By using cytofluorography, we found that monocytes from responders but not from nonresponders bound OKT3-FITC to their membrane. The binding could be blocked by mouse IgG2a and by human IgG, but not by mouse IgG1 nor by serum albumin. The data suggest that, through specific Fc gamma receptors for murine IgG2a, monocytes bind the Fc portion of OKT3 during T cell activation. The function of this Fc gamma receptor binding was further studied by culturing PBMC from nonresponders on plates coated with affinity-purified goat anti-mouse IgG antibodies as a substitute for monocyte Fc gamma receptors. The addition of OKT3 to nonresponder PBMC, cultured on such plates, resulted in T cell activation, as evidenced by thymidine incorporation, IL 2 production, and expression of IL 2 receptors. Soluble anti-mouse IgG was not able to substitute for monocyte Fc gamma receptors. The results demonstrate the existence of polymorphism in monocyte Fc gamma receptors for murine IgG2a. They also substantiate that an essential helper function of monocytes in T cell activation by anti-T3 is to provide a matrix for multimeric binding of the Fc portion of the anti-T3 antibodies in order to cross-link T3 molecules.  相似文献   

18.
19.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

20.
Endothelial cells are a potent source of hematopoietic growth factors when stimulated by soluble products of monocytes. Interleukin 1 (IL 1) is released by activated monocytes and is a mediator of the inflammatory response. We determined whether purified recombinant human IL 1 could stimulate cultured human umbilical vein endothelial cells to release hematopoietic growth factors. As little as 1 U/ml of IL 1 stimulated growth factor production by the endothelial cells, and increasing amounts of IL 1 enhanced growth factor production in a dose-dependent manner. Growth factor production increased within 2 to 4 hr and remained elevated for more than 48 hr. To investigate the molecular basis for these findings, oligonucleotide probes for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and multi-CSF were hybridized to poly(A)-containing RNA prepared from unstimulated and IL 1-stimulated endothelial cells. Significant levels of GM-CSF and G-CSF, but not M-CSF or multi-CSF, mRNA were detected in the IL 1-stimulated endothelial cells. Biological assays performed on the IL 1-stimulated endothelial cell-conditioned medium confirmed the presence of both GM- and G-CSF. These results demonstrate that human recombinant IL 1 can stimulate endothelial cells to release GM-CSF and G-CSF, and provide a mechanism by which IL 1 could modulate both granulocyte production and function during the course of an inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号