首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15.  相似文献   

3.
A screen for synthetic enhancers of sli-1 identified ark-1 (forAck-related tyrosine kinase), a novel inhibitor of let-23 EGFR signaling in C. elegans. An ark-1 mutation synergizes with mutations in other negative regulators of let-23, resulting in increased RAS signaling. Genetic analysis suggests that ARK-1 acts upstream of RAS and is dependent upon SEM-5. ARK-1 inhibits LET-23-mediated ovulation, a RAS-independent function. ARK-1 physically interacts with SEM-5 in the yeast two-hybrid assay. We find that sem-5 also has a negative function in let-23-mediated ovulation and suggest that this negative function is mediated by the recruitment of inhibitors such as ARK-1.  相似文献   

4.
Sli-1, a Negative Regulator of Let-23-Mediated Signaling in C. Elegans   总被引:10,自引:0,他引:10       下载免费PDF全文
By screening for suppressors of hypomorphic mutations of let-23, a receptor tyrosine kinase necessary for vulval induction in Caenorhabditis elegans, we recovered >/=12 mutations defining the sli-1 (suppressor of lineage defect) locus. sli-1 mutations suppress four of five phenotypes associated with hypomorphic alleles of let-23 but do not suppress let-23 null alleles. Thus, a sli-1 mutation does not bypass the requirement for functional let-23 but rather allows more potent LET-23-dependent signaling. Mutations at the sli-1 locus are otherwise silent with respect to vulval differentiation and cause only a low-penetrance abnormal head phenotype. Mutations at sli-1 also suppress the vulval defects but not other defects associated with mutations of sem-5, whose product likely interacts with LET-23 protein during vulval induction. Mutations at sli-1 suppress lin-2, lin-7 and lin-10 mutations but only partially suppress lin-3 and let-60 mutations and do not suppress a lin-45 mutation. The sli-1 locus displays dosage sensitivity: severe reduction of function alleles of sli-1 are semidominant suppressors; a duplication of the sli-1 (+) region enhances the vulvaless phenotype of hypomorphic mutations of let-23. We propose that sli-1 is a negative regulator that acts at or near the LET-23-mediated step of the vulval induction pathway. Our analysis suggests that let-23 can activate distinct signaling pathways in different tissues: one pathway is required for vulval induction; another pathway is involved in hermaphrodite fertilty and is not regulated by sli-1.  相似文献   

5.
6.
YK Bae  JY Sung  YN Kim  S Kim  KM Hong  HT Kim  MS Choi  JY Kwon  J Shim 《PloS one》2012,7(9):e42441
The epidermal growth factor receptor (EGFR) is a well-established target for cancer treatment. EGFR tyrosine kinase (TK) inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK), a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R]), or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R]) in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv) phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor) and U0126 (a MEK inhibitor) were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.  相似文献   

7.
SLI-1, a Caenorhabditis elegans homologue of the proto-oncogene product c-Cbl, is a negative regulator of LET-23-mediated vulval differentiation. Lack of SLI-1 activity can compensate for decreased function of the LET-23 epidermal growth factor receptor, the SEM-5 adaptor, but not the LET-60 RAS, suggesting that SLI-1 acts before RAS activation. SLI-1 and c-Cbl comprise an N-terminal region (termed SLI-1:N/Cbl-N, containing a four-helix bundle, an EF hand calcium-binding domain, and a divergent SH2 domain) followed by a RING finger domain and a proline-rich C-terminus. In a transgenic functional assay, the proline-rich C-terminal domain is not essential for sli-1(+) function. A protein lacking the SH2 and RING finger domains has no activity, but a chimeric protein with the SH2 and RING finger domains of SLI-1 replaced by the equivalent domains of c-Cbl has activity. The RING finger domain of c-Cbl has been shown recently to enhance ubiquitination of active RTKs by acting as an E3 ubiquitin-protein ligase. We find that the RING finger domain of SLI-1 is partially dispensable. Further, we identify an inhibitory tyrosine of LET-23 requiring sli-1(+) for its effects: removal of this tyrosine closely mimics the loss of sli-1 but not of another negative regulator, ark-1. Thus, we suggest that this inhibitory tyrosine mediates its effects through SLI-1, which in turn inhibits signaling upstream of LET-60 RAS in a manner not wholly dependent on the ubiquitin-ligase domain.  相似文献   

8.
Here we present a detailed genetic analysis of let-512/vps34 that encodes the Caenorhabditis elegans homologue of the yeast phosphatidylinositol 3-kinase Vps34p. LET-512/VPS34 has essential functions and is ubiquitously expressed in all tissues and developmental stages. It accumulates at a perinuclear region, and mutations in let-512/vps34 result in an expansion of the outer nuclear membrane as well as in a mislocalization and subsequent complete lack of expression of LRP-1, a C.elegans LDL receptor normally associated with the apical surface of hypodermal cells. Using a GFP::2xFYVE fusion protein we found that the phosphatidylinositol 3-phosphate (PtdIns 3-P) product of LET-512/VPS34 is associated with a multitude of intracellular membranes and vesicles located at the periphery, including endocytic vesicles. We propose that LET-512/VPS34 is required for membrane transport from the outer nuclear membrane towards the cell periphery. Thus, LET-512/VPS34 may regulate the secretory pathway in a much broader range of compartments than was previously suggested for the yeast orthologue.  相似文献   

9.
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.  相似文献   

10.
Phospholipase Cepsilon (PLCepsilon) is a novel class of phosphoinositide-specific PLC with unknown physiological functions. Here, we present the first genetic analysis of PLCepsilon in an intact organism, the nematode Caenorhabditis elegans. Ovulation in C. elegans is dependent on an inositol 1,4,5-trisphosphate (IP(3)) signaling pathway activated by the receptor tyrosine kinase LET-23. We generated deletion mutants of the gene, plc-1, encoding C. elegans PLCepsilon. We observed a novel ovulation phenotype whereby oocytes are trapped in the spermatheca due to delayed dilation of the spermatheca-uterine valve. The expression of plc-1 in the adult spermatheca is consistent with its involvement in regulation of ovulation. On the other hand, we failed to observe genetic interaction of plc-1 with let-23-mediated IP(3) signaling pathway genes, suggesting a complex mechanism for control of ovulation.  相似文献   

11.
Guanine nucleotide exchange factors (GEFs) regulate the activity of small GTP-binding proteins in a variety of biological processes. We have identified a gain-of-function mutation in the Caenorhabditis elegans GEF ect-2, the homologue of the mammalian ect2 proto-oncogene that has an essential role during cytokinesis. Here, we report that, in addition to its known function during mitosis, ECT-2 promotes the specification of the primary vulval cell fate by activating RAS/mitogen-activated protein kinase (MAPK) signalling before the end of the S-phase. Epistasis analysis indicates that ECT-2 crosstalks to the canonical RAS/MAPK cascade upstream of the RAS GEF SOS-1 by means of a RHO-1 signalling pathway. Our results raise the possibility that the transforming activity of the mammalian ect-2 oncogene could be due to hyperactivation of the RAS/MAPK pathway.  相似文献   

12.
LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling.  相似文献   

13.
Attenuation of RAS/RAF/MAPK signalling is essential to prevent hyperactivation of this oncogenic pathway. In C. elegans, the sumoylation pathway and a combination of histone tail modifications regulate gene expression to attenuate the LET-60 (RAS) signalling pathway. We hypothesised that a number of chromatin regulators are likely to depend on sumoylation to attenuate the pathway. To reveal these, we designed an RNAi-based dimorphic genetic screen that selects candidates based on their ability to act as enhancers of a sumo mutant phenotype, such interactions would suggest that the candidates may be physically associated with sumoylation. We found 16 enhancers, one of which BET-1, is a conserved double bromodomain containing protein. We further characterised BET-1 and showed that it can physically associate with SMO-1 and UBC-9, and that it can be sumoylated in vitro within the second bromodomain at lysine 252. Previous work has shown that BET-1 can bind acetyl-lysines on histone tails to influence gene expression. In conclusion, our screening approach has identified BET-1 as a Sumo-dependent attenuator of LET-60-mediated signalling and our characterisation suggests that BET-1 can be sumoylated.  相似文献   

14.
To discover and study intracellular signals that regulate proteolysis in muscle, we have employed transgenic strains of Caenorhabditis elegans that produce a soluble LacZ reporter protein limited to body-wall and vulval muscles. This reporter protein is stable in well-fed wild-type animals, but its degradation is triggered upon a shift to 25 degrees C in a strain carrying a temperature-sensitive activating mutation in the Ras oncogene homologue let-60. These mutants are not physiologically starved, inasmuch as growth rates are normal at 25 degrees C. Ras-induced degradation is not prevented by the presence of cycloheximide added at or before the temperature shift and thus uses preexisting proteolytic systems and signaling components. Furthermore, degradation is triggered when adult animals are shifted to conditions of 25 degrees C, confirming that Ras acutely promotes protein degradation in muscles whose developmental history is normal. Reduction-of-function mutations in the downstream protein kinase Raf (lin-45), MEK (mek-2), or mitogen-activated protein kinase (MAPK) (mpk-1) prevent Ras-induced protein degradation, whereas activated MPK-1 is sufficient to trigger degradation, indicating that this kinase cascade is the principal route by which Ras signaling triggers protein degradation in muscle. This pathway is activated in hypodermal cells by the LET-23 epidermal growth factor receptor homologue, but an activating mutation in let-23 does not promote proteolysis in muscle. Starvation-induced LacZ reporter degradation is unaffected by reduction-of-function mutations in Ras, Raf, MEK, or MAPK, implying that Ras activation and starvation trigger proteolysis by mechanisms that are at least partially independent. This is the first evidence that Ras-Raf-MEK-MAPK signaling activates protein degradation in differentiated muscle.  相似文献   

15.
Striated muscles from Drosophila and several vertebrates extend plasma membrane to facilitate the formation of the neuromuscular junction (NMJ) during development. However, the regulation of these membrane extensions is poorly understood. In C. elegans, the body wall muscles (BWMs) also have plasma membrane extensions called muscle arms that are guided to the motor axons where they form the postsynaptic element of the NMJ. To investigate the regulation of muscle membrane extension, we screened 871 genes by RNAi for ectopic muscle membrane extensions (EMEs) in C. elegans. We discovered that an FGF pathway, including let-756(FGF), egl-15(FGF receptor), sem-5(GRB2) and other genes negatively regulates plasma membrane extension from muscles. Although compromised FGF pathway activity results in EMEs, hyperactivity of the pathway disrupts larval muscle arm extension, a phenotype we call muscle arm extension defective or MAD. We show that expression of egl-15 and sem-5 in the BWMs are each necessary and sufficient to prevent EMEs. Furthermore, we demonstrate that let-756 expression from any one of several tissues can rescue the EMEs of let-756 mutants, suggesting that LET-756 does not guide muscle membrane extensions. Our screen also revealed that loss-of-function in laminin and integrin components results in both MADs and EMEs, the latter of which are suppressed by hyperactive FGF signaling. Our data are consistent with a model in which integrins and laminins are needed for directed muscle arm extension to the nerve cords, while FGF signaling provides a general mechanism to regulate muscle membrane extension.  相似文献   

16.
The major determinants of receptor tissue tyrosine kinase (RTK) signaling specificity have been proposed to be Src homology 2 (SH2) binding sites, phosphotyrosine-containing oligopeptides in the cytoplasmic domain of the receptor. The Caenorhabditis elegans epidermal growth factor receptor homologue LET-23 has multiple functions during development and has eight potential SH2-binding sites in a region carboxyl terminal to its kinase domain. By analyzing transgenic nematodes for three distinct LET-23 functions, we show that six of eight potential sites function in vivo and that they are required for most, but not all, of LET-23 activity. A single site is necessary and sufficient to promote wild-type fertility. Three other sites activate the RAS pathway and are involved only in viability and vulval differentiation. A fifth site is promiscuous and can mediate all three LET-23 functions. An additional site mediates tissue-specific negative regulation. Putative SH2 binding sites are thus key effectors of both cell-specific and negative regulation in an intact organism. We suggest two distinct mechanisms for tissue-specific RTK-mediated signaling. A positive mechanism would promote RTK function through effectors present only in certain cell types. A negative mechanism would inhibit RTK function through tissue-specific negative regulators.  相似文献   

17.
Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease.  相似文献   

18.
The extent to which excitable cells and behavior modulate animal development has not been examined in detail. Here, we demonstrate the existence of a novel pathway for promoting vulval fates in C. elegans that involves activation of the heterotrimeric Galphaq protein, EGL-30. EGL-30 acts with muscle-expressed EGL-19 L-type voltage-gated calcium channels to promote vulva development, and acts downstream or parallel to LET-60 (RAS). This pathway is not essential for vulval induction on standard Petri plates, but can be stimulated by expression of activated EGL-30 in neurons, or by an EGL-30-dependent change in behavior that occurs in a liquid environment. Our results indicate that excitable cells and animal behavior can provide modulatory inputs into the effects of growth factor signaling on cell fates, and suggest that communication between these cell populations is important for normal development to occur under certain environmental conditions.  相似文献   

19.
Protein phosphatase 2A (PP2A) can both positively and negatively influence the Ras/Raf/MEK/ERK signaling pathway, but its relevant substrates are largely unknown. In C. elegans, the PR55/B regulatory subunit of PP2A, which is encoded by sur-6, positively regulates Ras-mediated vulval induction and acts at a step between Ras and Raf. We show that the catalytic subunit (C) of PP2A, which is encoded by let-92, also positively regulates vulval induction. Therefore SUR-6/PR55 and LET-92/PP2A-C probably act together to dephosphorylate a Ras pathway substrate. PP2A has been proposed to activate the Raf kinase by removing inhibitory phosphates from Ser259 from Raf-1 or from equivalent Akt phosphorylation sites in other Raf family members. However, we find that mutant forms of C. elegans LIN-45 RAF that lack these sites still require sur-6. Therefore, SUR-6 must influence Raf activity via a different mechanism. SUR-6 and KSR (kinase suppressor of Ras) function at a similar step in Raf activation but our genetic analysis suggests that KSR activity is intact in sur-6 mutants. We identify the kinase PAR-1 as a negative regulator of vulval induction and show that it acts in opposition to SUR-6 and KSR-1. In addition to their roles in Ras signaling, SUR-6/PR55 and LET-92/PP2A-C cooperate to control mitotic progression during early embryogenesis.  相似文献   

20.
All metazoan genomes encode multiple RAS GTPase activating proteins (RasGAPs) that negatively regulate the conserved RAS/MAPK signaling pathway. In mammals, several RasGAPs exhibit tumor suppressor activity by preventing excess RAS signal transduction. We have identified gap-3 as the to date missing Caenorhabditiselegans member of the p120 RasGAP family. By studying the genetic interaction of gap-3 with the two previously identified RasGAPs gap-1 and gap-2, we find that different combinations of RasGAPs are used to repress LET-60 RAS signaling depending on the cellular context. GAP-3 is the predominant negative regulator of RAS during meiotic progression of the germ cells, while GAP-1 is the key inhibitor of RAS during vulval induction. In other tissues such as the sex myoblasts or the chemosensory neurons, all three RasGAPs act in concert. The C. elegans RasGAPs have thus undergone partial specialization after gene duplication to allow the differential regulation of the RAS/MAPK signaling pathway in different cell types. A similar tissue specialization of the human tumor suppressor genes may explain the strong bias in the type of cancer they promote when mutated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号