首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R. Hampp 《Planta》1979,144(4):325-332
Using the technique of silicone oil filtration of organelles and the inhibitor stop method, the kinetics of transport of inorganic phosphate across the inner mitochondrial membrane were tested in relation to different stages of greening (0 to 24 h) of etiolated laminae of Avena sativa L., and compared to the rates of oxygen consumption and ATP formation. The results demonstrate that there is a pronounced increase in phosphate transport after 3 h of greening, reaching values for Vmax (about 17 mol mg protein-1 h-1) that are three times as high as those measured with mitochondria from etiolated tissue. This is also mirrored by the rates of respiration and oxidative phosphorylation. After 24 h of light treatment (4 Klx), respiration and ATP formation, as well as V decreased again to levels below those of the etiolated stage. In contrast to V, there was no change in the affinity between inorganic phosphate and the binding sites of the transporting systems involved, as indicated by a rather constant Km (0.23 mM) for phosphate transport. Of the inhibitors of phosphate transport tested, mersalyl and methyl mercuric iodide were most efficient with identical characteristics of inhibition; but compared to animal mitochondria, the concentrations needed to result in similar amounts of inhibition, were more than ten times higher. The results are discussed with respect to plastid development.Abbreviations BSA bovine serum albumine - CH3HgJ methyl mercuric iodide - Cyt cytochrome - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulfonic acid - MDH malate dehydrogenase - NEM N-ethylmaleimide  相似文献   

2.
S. Grombein  W. Rüdiger  R. Hampp 《Planta》1978,141(3):273-277
Phytochrome was determined in etiolated laminae of Avena sativaL. either without pretreatment or after 5 min of red irradiation followed by different periods of darkness (0–24 h). At given intervals laminae were homogenized and phytochrome was determined spectrophotometrically in the total homogenate and in purified etioplasts and mitochondria. Enhanced specific activity of phytochrome was found in all fractions after the irradiation in comparison to dark controls. Phytochrome destruction was observed in all fractions at the beginning of the subsequent dark period. Whereas the homogenate and the mitochondrial fraction showed a continuous destruction so that phytochrome reached a level far below that in etiolated plants, the phytochrome level in the plastid fraction reacheda minimum at 2 h with a subsequent increase beyond the dark level. This increase was most pronounced between 4 and 8 h after the red irradiation. The results are discussed in terms of the destruction and possible de novo synthesis of phytochrome that may be different in mitochondria and plastids.Abbreviations Ptot total phytochrome - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - ER endoplasmic reticulum  相似文献   

3.
Y. Shimazaki  L. H. Pratt 《Planta》1986,168(4):512-515
Thirty-nine antiserum preparations from eight rabbits were screened for their ability to precipitate the immunochemically distinct phytochrome that is obtained from green oat (Avena sativa L.) shoots. The antisera were obtained from rabbits immunized with either proteolytically degraded, but still photoreversible, 60-kDa (kilodalton) phytochrome, or approx. 120-kDa phytochrome, both of which were purified from etiolated oat shoots. The ability of these antisera to precipitate phytochrome from green oats was independent of the size of phytochrome used for immunization. While crude antisera immunoprecipitated as much as 80% of the phytochrome isolated from green oat shoots, antibodies immunopurified from these sera with a column of highly purified, approx. 120-kDa phytochrome from etiolated oats precipitated no more than about 5–10%.Abbreviations kDa kilodalton - mU milliunit  相似文献   

4.
V. Speth  V. Otto  E. Schäfer 《Planta》1986,168(3):299-304
We have analysed the intracellular localisation of phytochrome in oat coleoptile cells by electron microscopy and confirm and extend light-microscopical findings of previous authors. We used indirect immuno-labeling with polyclonal antibodies against 60-KDa phytochrome from etiolated oat seedlings, and a gold-coupled second antibody, on ultrathin sections of LR-white-embedded material. In dark-grown seedlings, phytochrome-labeling is distributed diffusely throughout the cytoplasm. Organelles and membranes are not labeled. After photoconversion of the red-absorbing form of phytochrome to the far-red absorbing form (Pfr) (5-min red light; 660 nm), the label is sequestered uniquely in electron-dense areas within the cytoplasm. These areas are irregularly shaped, are often located in the vicinity of the vacuole, are not surrounded by a membrane, exclude cellular organelles and ribosomes and are not found in dark-grown material; an immediate 5-min farred light pulse after the red light does not cause these structures to disappear. After a dark period of 3–4 h following red-light irradiation, these electron-dense structures disappear together with any specific labeling. We suggest a Pfr-induced aggregation of an unknown, phytochrome-binding protein or proteins.Abbreviations Pr and Pfr phytochrome in its red and far-red absorbing form, respectively  相似文献   

5.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

6.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):128-134
Phytochrome in the far-red light absorbing form (Pfr) was observed to disappear in vivo more rapidly from the non-cation-requiring pelletable phytochrome population than from the supernantant phytochrome population of oat seedlings given an increasing dark incubation after red irradiation. The amount of pelletable phytochrome in the red light absorbing form (Pr) remained relatively stable while supernatant Pr was lost. These observations indicated that supernant Pfr was subject to loss during the incubation, while pelletable Pfr was subject to both dark reversion and loss.During the incubation, the ability of far-red irradiation to reverse the red-induced increase in phytochrome pelletability was lost, with kinetics similar to those of the loss of pelletable Pfr.Far-red reversibility of the red-induced increase in coleoptile elongation correlated with the change intotal Pfr in both supernatant and pelletable phytochrome populations, but with the change in the ratio of Pfr to total phytochrome only in the pelletable phytochrome population.The possible significance of these results is discussed with reference to the action of phytochrome in the photocontrol of physiological growth responses.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the red absorbing form - Ptot total phytochrome  相似文献   

7.
Phytochrome was studied spectrophotometrically in Avena sativa L. seedlings that had been grown for 6 d in continous white fluorescent light from lamps. Greening was prevented through the use of the herbicide San 9789. When placed in the light, phytochrome (Ptot) decreased with first order kinetics (1/2 2 h) but reached a stable low level (2.5% of the dark level) after 36 h. This concentration of phytochrome remained constant in the light and during the initial hours of a subsequent dark period, but increased significantly after a prolonged dark period. Evidence suggests that the constant pool of phytochrome in the light is achieved through an equilibrium between synthesis of the red absorbing (Pr) and destruction of the far-red absorbing form (Pfr) of phytochrome. It is concluded that the phytochrome system in light-grown oat seedlings is qualitatively the same as that known from etiolated monocotyledonous seedlings, but different than that described for cauliflower florets.Abbreviations Pfr the far-red light absorbing form of phytochroma - Pr the red light absorbing form of phytochrome - Ptot Pr+Pfr - ks rate constant of Pr synthesis - kd rate constant of Pfr destruction - MOPS N-morpholino-3-propane-sulfonic acid - IRIS Tris (hydroxymethyl) amino methane - San 9789 4-chloro-5-(methyl amino)-2-(,,-trifluoro-m-tolyl)-3(2H)pyridazinone  相似文献   

8.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   

9.
Seven monoclonal antibodies (MAbs) have been prepared to phytochrome from green oat (Avena sativa L. cv. Garry) leaves. One of these MAbs (GO-1) cross-reacts with apoprotein of the phytochrome that is most abundant in etiolated oat shoots as assessed by immunoblot assay of fusion proteins expressed in Escherichia coli. The epitope for this MAb is located between amino acids 618 and 686 in the primary sequence of type 3 phytochrome (Hershey et al. 1985, Nucleic Acids Res. 13, 8543–8559), which is one of the predominant phytochromes in etiolated oats. Three other MAbs (GO-4, GO-5, GO-6) immunoprecipitate phytochrome isolated from green oat leaves, as evaluated by photoreversibility assay. GO-1, GO-4, GO-5 and GO-6 are therefore directed to phytochrome. While evidence obtained with the other three MAbs (GO-2, GO-7, GO-8) strongly indicates that they are also directed to phytochrome, this evidence is not as rigorous. Recognition of antigen by any of these seven MAbs is not significantly reduced by periodate oxidation, indicating that their epitopes probably do not include carbohydrate. All but GO-1 bind either very poorly or not at all the phytochrome that is abundant in etiolated oat shoots. These data reinforce earlier observations made with antibodies directed to phytochrome from etiolated oats, indicating (1) that the phytochromes that predominate in etiolated and green oats differ immunochemically and (2) that phytochrome preparations from green oat leaves contain very little of the phytochrome that is abundant in etiolated shoots. An hypothesis that these two immunochemically distinct phytochromes form heterodimers in vitroAbbreviations Da Dalton - DEAE diethylaminoethyl - ELISA enzyme-linked immunosorbent assay - HA hydroxyapatite - Ig immunoglobulin - MAb monoclonal antibody - SDS sodium dodecyl sulfate is supported by comparison of immunoblot data obtained with conventionally purified phytochrome from etiolated oats to that expressed as fusion protein in E. coli. This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). We thank Dr. Lyle Crossland and Ms. Sue Kadwell for their assistance in the construction of the cDNA clones, and Dr. Gyorgy Bisztray for providing us with clone pCBP3712. Dr. Phillip Evans and Dr. Russell Malmberg kindly provided MAbs 4F3, 6F12 and 8C10, as well as a corresponding antigen preparation. The excellent technical assistance of Mrs. Donna Tucker and Mrs. Danielle Neal is gratefully acknowledged.  相似文献   

10.
Sequestered particles of phytochrome (SAPs) were partially purified from red-light-irradiated oat coleoptiles. Phytochrome pelletability was enhanced by using buffers containing 10 mM Mg2+ or high concentrations (0.6–0.8 M) of orthophosphate (Pi). Combining the pelletability of phytochrome in the presence of Mg2+ with that in the presence of 0.6 Pi resulted in a strong enrichment (about 100-fold) of pelletable phytochrome. Antisera were raised against Mg2+-Pi-pellets from darkgrown seedlings. Using these antisera, no evidence was found by Western blotting and immunocytochemistry that SAPs contain major proteins other than phytochrome. The major contamination of these enriched SAP preparations consisted of protein crystals which are probably catalase. The preparations contained methyltransferase and protein-kinase activities which were not associated with SAPs. Phytochrome purified from SAPs served as a substrate for protein-kinase activity but not for the methyltransferase activity. Phytochrome itself did not show any kinase activity.Abbreviations ME 2-mercaptoethanol - PAGE polyacrylamide gel electrophoresis - Pfr far-red-light-absorbing form of phytochrome - PMSF phenylmethylsulfonyl fluoride - SAP sequestered area of phytochrome - SDS sodium dodecyl sulfate This work was supported by Deutsche Forschungsgemeinschaft. The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

11.
Phytochrome from 10 or 11-d-old oat (Avena sativa L. cv. Garry) leaves, which were harvested just prior to sunset from plants grown in a greenhouse in the absence of supplemental illumination, was purified an estimated 250-fold by sequential poly(ethylenimine) and ammonium-sulfate fractionations, followed by linear-gradient hydroxyapatite chromatography. Compared to earlier protocols, the one presented here is substantially more rapid, provides improved yield and purity, can be used with larger quantities of tissue, and eliminates an apparently immunodominant contaminant with a molecular mass of about 115 kDa (kilodalton). Phytochrome obtained by this procedure has an apparent monomer size of 123 kDa as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is estimated to be 0.6% pure. This purity permitted spectral analysis at wavelengths below 500 nm, in which region phytochromes from green and etiolated oat shoots do not differ markedly, as they do at longer wavelengths.Abbreviations Da Dalton - HA hydroxyapatite - Pfr, Pr farredand red-absorbing form of phytochrome, respectively - SDS sodium dodecyl sulfate This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). The excellent technical assistance of Mrs. Donna Tucker and Mrs. Danielle Neal is gratefully acknowledged.  相似文献   

12.
A single polypeptide is immunospecifically precipitated by monospecific antiphytochrome from the total translation products of both wheat-germ and rabbit-reticulocyte cell-free protein synthesizing systems programmed with oat (Avena sativa L.) poly(A) RNA. The mobility of this polypeptide is slightly lower on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis than that of immunoaffinity-purified, 118 kdalton phytochrome and corresponds to an apparent molecular weight of 124 kdalton. Evidence against the possibility that this mobility difference results from intracellular processing of the 124-kdalton protein is provided by extraction of freeze-dried tissue directly into boiling SDS-containing buffer. This procedure yields a phytochrome species with a mobility on SDS polyacrylamide gel electrophoresis indistinguishable from that of the in-vitro translation product. Together the data indicate that the phytochrome polypeptide is synthesized in its mature form in the cell but is subject to modification to a form with lower apparent molecular weight during immunopurification.Abbreviations IgG immunoglobulin G - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

13.
Characterisation of a new monoclonal antibody (mAb), designated LAS 41, directed against 124-kilodalton (kDa) etiolated-oat (Avena sativa L.) phytochrome, indicates that it recognises an epitope unique to the red-light-absorbing form, Pr. In a solid-phase enzyme-linked immunosorbent assay (ELISA), LAS 41 exhibits a seven- to eight-fold higher affinity for Pr than for the far-red-light-absorbing form of phytochrome, Pfr. In addition, in immunoprecipitation assays LAS 41 effectively precipitates 100% of phytochrome presented as Pr but only precipitates a maximum of 24.5% of phytochrome presented as Pfr. These values are indicative of binding exclusively to Pr. Peptide-mapping studies show that LAS 41 recognises and epitope located within a region 6–10 kDa from the aminoterminus of the phytochrome molecule. Since binding of LAS 41 to Pr induces alterations in the spectral properties of Pr, this indicates that at least part of the 4 kDa domain to which the antibody binds is essential for protein-chromophore interaction. Subsequent photoconversion of LAS 41-Pr complexes produces native Pfr spectra, with concomitant production of free antibody and antigen, as shown by a modified ELISA. The specificity of LAS 41 for Pr has facilitated the purification of Pfr which is free of contaminating Pr. This has enabled direct determination of the mole fraction of Pfr established by red light to be 0.874.Abbreviations ELISA enzyme-linked immunsorbent assay - kDa kilodalton - mAb monoclonal antibody - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - (A) difference in absorbance (A 665 Pr –A 730 Pr )-(A 665 Pfr –A 730 Pfr ) - Ar/Afr spectral change ratio (SCR) - max mole fraction of Pfr following saturating red light  相似文献   

14.
The spectral properties of peptides generated from etiolated-Avana, 124-kDa (kilodalton) phytochrome by endogenous protease(s) have been studied to assess the role of the amino-terminal and the carboxyl-terminal domains in maintaining the proper interaction between protein and chromophore. The amino-terminal, 74-kDa chromopeptide, a degradation product of the far-red absorbing form of the pigment (Pfr), is shown to be spectrally similar to the 124-kDa, undegraded molecule. The minimum and maximum of the difference spectrum (Pr-Pfr) are 730 and 665 nm, respectively, and the spectral-change ratio is unity. Also, like undegraded, 124-kDa phytochrome, the 74-kDa peptide exhibits minimal dark reversion. These data indicate that the 55-kDa, carboxyl-terminal half of the polypeptide does not interact with the chromophore and may not have a role in the structureal integrity of the amino-terminal domain. The 64-kDa chromopeptide can be generated directly from the 74-kDa species by cleavage of 10 kDa from the amino terminus upon incubation of this species as Pr. Accompanying this conversion are changes in the spectral properties, namely, a shift in the difference spectrum minimum to 722–724 nm and a tenfold increase in the capacity for dark reversion. These data indicate that the 6–10 kDa, amino-terminal segment continues to function in its role of maintaining proper chromophore-protein interactions in the 74-kDa peptide as it does in the undegraded molecule. Conversely, removal of this segment upon proteolysis to the 63-kDa species leads to aberrant spectral properties analogous to those observed when this domain is lost from the full-length, 124-kDa molecule, resulting in the 118/114-kDa degradation products. The data also show that photoconversion of the 74-kDa chromopeptide from Pfr to Pr exposes proteolytically susceptible sites in the same way as in the 124-kDa molecule. Thus, the separated, 74-kDa amino-terminal domain undergoes a photoinducible conformational change comparable to that in the intact molecule.Abbreviations and symbols Da dalton - Pfr far-red-absorbing from of phytochrome - PMSF phenylmethylsulfonyl fluoride - Pr red-absorbing form of phytochrome - R red light - FR lar-red light - A r/A fr spectral change ratio - max FR peak maximum (nm) of Pfr absorbance  相似文献   

15.
Y. -N. Hong  P. Schopfer 《Planta》1981,152(4):325-335
The peroxisomal enzyme, urate oxidase (EC 1.7.3.3), and the next enzyme of the urate pathway, allantoinase (EC 3.5.2.5), demonstrate a lightmediated rise of activity in the cotyledons of mustard (Sinapis alba L.). The capacity of the peroxisomes for urate breakdown, marked by the time course of urate oxidase, develops distinctly later than the two other peroxisome functions (fatty acid breakdown, glyoxysomal function; glycolate breakdown, leaf peroxisomal function). The light effect on urate oxidase and allantoinase is mediated through the phytochrome system in all three seedling organs (cotyledons, hypocotyl, radicle), as revealed by induction/reversion experiments with red/far-red light pulses and continuous irradiation with far-red light (high irradiance reaction of phytochrome). Both enzyme activities can be induced by phytochrome in the seedling cotyledons only during a sensitive period of about 48 h prior to the actual light-mediated rise of activity, making it necessary to assume the existence of a long-lived intermediate (transmitter) in the signal response chain connecting enzyme formation to the phytochrome system. Detailed kinetic investigation, designed to test whether urate oxidase and allantoinase are controlled by phytochrome via the same signal response chain (coordinate induction), revealed large differences between the two enzymes: (i) a different onset of the loss of reversibility of a red light induction by a far-red light pulse (=onset of transmitter formation=coupling point; 48 h/24 h after sowing for urate oxidase/allantoinase); (ii) a different onset of the response (=onset of competence for transmitter= starting point; 72 h/48 h); (iii) full loss of reversibility (=completion of transmitter formation) is reached at different times (independence point, 90 h/52 h). These differences show that phytochrome controls urate oxidase and allantoinase via separate signal response chains. While urate oxidase can be localized in the peroxisomal fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the peroxisomal fraction did not appear to be an integral part of the peroxisome but originated presumably from adhering membrane fragments.Abbreviations AL allantoinase, EC 3.5.2.5 - CAT catalase, EC 1.11.1.6 - GO glycolate oxidase, EC 1.1.3.1 - ICL isocitrate lyase, EC 4.1.3.1 - UO urate oxidase, EC 1.7.3.3. Pr - Pfr red and far-red absorbing forms of phytochrome On the occasion of his 80th birthday we dedicate this paper to Prof. Dr. phil., Dr. mult. h.c. Kurt Mothes, pioneer in research on metabolism of urates  相似文献   

16.
The abundance and molecular mass of phytochrome in germinating embryos of A. sativa (oat) grown in light or darkness have been monitored using immunoblot and spectrophotometric assays. Immunoblot analysis shows that imbibed but quiescent embryos have two immunochemically distinct species of phytochrome with monomeric molecular masses of 124 and 118 kDa (kdalton). The 118-kDa species has the properties of the 118-kDa phytochrome extracted from fully green oat tissue (J.G. Tokuhisa, S.M. Daniels, P.H. Quail, 1985, Planta 164, 321–332), whereas the 124-kDa polypeptide appears similar to the well-characterized photoreceptor of etiolated tissue. The capacity of antibodies directed against etiolated-oat phytochrome to immunoprecipitate the 124-kDa species but not the 118-kDa species has been exploited to quantitate the levels of each separately over a 72-h time course of germination and seedling development. The abundance of the 124-kDa molecule increases at least 200-fold in etiolated seedlings over 72 h whereas in light-grown seedlings the level of this molecule is relatively constant. In contrast, the amount of the 118-kDa species increases only twofold in both dark- and light-grown seedlings over the same period of time. These data indicate that whereas the abundance of 124-kDa phytochrome is regulated at the protein level by the well-documented, differential stability of the red- and far-red-absorbing forms in vivo, the 118-kDa molecule is present at a low constitutive level, presumably reflecting no such difference in the stability of the two spectral forms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

17.
The effect of light on the phytochrome content of cauliflower (Brassica oleracea (L.) var. botrytis) curd was studied using in vivo spectrophotometry. It was found that light caused a rapid increase in phytochrome level whereas transfer to darkness caused a rapid loss, regardless of the amount of phytochrome initially present in the far red absorbing form. The amount of phytochrome detectable during continuous irradiation appears to be related to the photoequilibrium , and is thus controlled by phytochrome itself.Abbreviation Pr and Pfr red and far red absorbing forms of phytochrome, respectively  相似文献   

18.
Proteolytic fragments were obtained by limited proteolysis of 124-kDa (kilodalton) phytochrome from etiolatedAvena sativa using trypsin, endoproteinase-Lys-C, endoproteinase-Glu-C and subtilisin. The fragments were separated by sodium dodecyl sulfate gel electrophoresis, blotted onto activated glass-fiber sheets and investigated by amino-acid sequencing in a gas-phase sequencer. Determination of N-terminal sequences in three to six Edman degradation steps allowed the exact localization of the fragments within the published entire amino-acid sequence of 124-kDaAvena phytochrome (H.P. Hershey, R.F. Barker, K.B. Idler, J.L. Lissemore, P.H. Quail (1985), Nucleic Acids Res.13, 8543–8559). From the knowledge of the exact sites for preferred proteolytic cleavage of undenatured phytochrome, conclusions on the conformation of the phytochrome protein were drawn. Sites of preferred cleavage are considered to be freely exposed to the environment whereas potential cleavage sites which are resistant to proteolysis over a long time are considered to be localized in the interior of the native phytochrome. Two different sites which are exposed in the far-red-absorbing form but not in the red-absorbing form of phytochrome are localized at amino-acid residues 354 and 753, respectively. The N-terminal region which is exposed only in the red-absorbing form stretches only as far as amino-acid residue 60.Abbreviations kDa kilodalton - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Dedicated to Professor W. Rau on the occasion of his 60th birthday.  相似文献   

19.
Polyclonal antibodies raised in rabbits to a mixture of sodium-dodecyl-sulphate-denatured C- and allo-phycocyanin, isolated from Anabaena cylindrica, cross-react with 124-kilodalton (kDa) phytochrome from etiolated oats, in enzyme-linked immunosorbent assays and on Western blots. The component(s) of the anti-phycocyanin serum that cross-reacts with phytochrome appears to be specific for the red-absorbing form of phytochrome (Pr). These antibodies can be detached from Pr by irradiation with red light, and thus show photoreversible binding. This property has been used to immunopurify the anti-phytochrome component from the antiserum using red light as the eluting agent. Competition assays and epitope-mapping studies indicate that the anti-phytochrome component may bind to a site located between 6 and 10 kDa from the amino-terminus of etiolated oat phytochrome.Abbreviations ELISA enzyme-linked immunosorbent assay - kDa kilodaton - FR far-red light - Pfr far-red-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - R red light - SDS sodium dodecyl sulphate  相似文献   

20.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):115-120
Supernatant and resuspended pellet samples from a centrifugation of homogenised, etiolated oat seedlings were prepared and assayed spectrophotometrically for phytochrome in the presence and absence of added calcium carbonate (CaCO3) particles under a variety of conditions. At a constant sample thickness, in the absence of CaCO3, increasing sample concentration had no significant effect on the expected phytochrome reading. In the presence of CaCO3, however, as sample concentration increased, the phytochrome reading was less than, expected more so in resuspended pellet samples than in supernatant samples. At a constant sample concentration in the absence of CaCO3, increasing sample thickness gave no significant difference from the excepted phytochrome reading in supernatant samples, but led to a slight increase over the expected phytochrome reading in resuspended pellet samples. In the presence of CaCO3, increasing sample thickness led to a drop from the expected phytochrome reading in both sample types, but more so in resuspended pellet samples. These findings show that the use of CaCO3 as an aid to spectrophotometric phytochrome assay can lead to large artifacts in the instrument reading and that its use should be approached with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号