首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium regulates folding and disulfide-bond formation in alpha-lactalbumin   总被引:2,自引:0,他引:2  
Refolding and disulfide bond formation in reduced denatured bovine alpha-lactalbumin is shown to be Ca2+-dependent. Whereas in the absence of Ca2+ only about 2% of the native active protein is regenerated, in the presence of Ca2+, almost quantitative renaturation is obtained. A close coupling between Ca2+-binding and native disulfide bond formation is also indicated by spontaneous disulfide scrambling in the apoprotein in the presence of low concentrations of thiols. This phenomenon is not found in other disulfide-containing proteins including the homologous chicken lysozyme. It is proposed that the alpha-lactalbumin Ca2+-binding site has the in vivo function of imposing Ca2+ regulation on the folding of nascent alpha-lactalbumin and thereby on lactose synthesis.  相似文献   

2.
DsbC is one of five Escherichia coli proteins required for disulfide bond formation and is thought to function as a disulfide bond isomerase during oxidative protein folding in the periplasm. DsbC is a 2 x 23 kDa homodimer and has both protein disulfide isomerase and chaperone activity. We report the 1.9 A resolution crystal structure of oxidized DsbC where both Cys-X-X-Cys active sites form disulfide bonds. The molecule consists of separate thioredoxin-like domains joined via hinged linker helices to an N-terminal dimerization domain. The hinges allow relative movement of the active sites, and a broad uncharged cleft between them may be involved in peptide binding and DsbC foldase activities.  相似文献   

3.
Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa protein with five overlapping disulfide bonds. We show that reduced RBI can be refolded quantitatively in glutathione redox buffers in vitro and spontaneously adopts the single correct conformation out of 750 possible species with five disulfide bonds. Under oxidizing redox conditions, however, RBI folding is hampered by accumulation of a large number of intermediates with non-native disulfide bonds, while a surprisingly low number of intermediates accumulates under optimal or reducing redox conditions. DsbC catalyzes folding of RBI under all redox conditions in vitro, but is particularly efficient in rearranging buried, non-native disulfide bonds formed under oxidizing conditions. In contrast, the influence of DsbA on the refolding reaction is essentially restricted to reducing redox conditions where disulfide formation is rate limiting. The effects of DsbA and DsbC on folding of RBI in E.coli are very similar to those observed in vitro. Whereas overexpression of DsbA has no effect on the amount of correctly folded RBI, co-expression of DsbC enhanced the efficiency of RBI folding in the periplasm of E.coli about 14-fold. Addition of reduced glutathione to the growth medium together with DsbC overexpression further increased the folding yield of RBI in vivo to 26-fold. This shows that DsbC is the bacterial enzyme of choice for improving the periplasmic folding yields of proteins with very complex disulfide bond patterns.  相似文献   

4.
Energetics of structural domains in alpha-lactalbumin.   总被引:3,自引:3,他引:0       下载免费PDF全文
alpha-Lactalbumin is a small, globular protein that is stabilized by four disulfide bonds and contains two structural domains. One of these domains is rich in alpha-helix (the alpha-domain) and has Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds. The other domain is rich in beta-sheet (the beta-domain), has Cys 61-Cys 77 and Cys 73-Cys 91 disulfide bonds, and includes one calcium binding site. To investigate the interaction between domains, we studied derivatives of bovine alpha-lactalbumin differing in the number of disulfide bonds, using calorimetry and CD at different temperatures and solvent conditions. The three-disulfide form, having a reduced Cys 6-Cys 120 disulfide bond with carboxymethylated cysteines, is similar to intact alpha-lactalbumin in secondary and tertiary structure as judged by its ellipticity in the near and far UV. the two-disulfide form of alpha-lactalbumin, having reduced Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds with carboxymethylated cysteines, retains about half the secondary and tertiary structure of the intact alpha-lactalbumin. The remaining structure is able to bind calcium and unfolds cooperatively upon heating, although at lower temperature and with significantly lower enthalpy and entropy. We conclude that, in the two disulfide form, alpha-lactalbumin retains its calcium-binding beta-domain, whereas the alpha-domain is unfolded. It appears that the beta-domain does not require alpha-domain to fold, but its structure is stabilized significantly by the presence of the adjacent folded alpha-domain.  相似文献   

5.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

6.
Kinetics of disulfide reduction in alpha-lactalbumin by dithiothreitol are investigated by measuring time-dependent changes in absorption at 310 nm and in CD ellipticity at 270 nm (pH 8.5 or 7.0, and 25 degrees C). When the disulfide-intact protein is folded, the kinetics are biphasic. The disulfide bond between the half-cystines-6 and -120 is reduced in the fast phase, and the other three disulfide bonds are reduced in the slow phase. The apparent rate constants of the two phases are both proportional to the concentration of dithiothreitol, indicating that both phases are expressed by bimolecular reactions. However, detailed molecular mechanisms that determine the reaction rates are markedly different between the two phases. The slow phase shows a sigmoidal increase in the reaction rate with increasing concentration of a denaturant, urea, and is also accelerated by destabilization of the native state on removal of the bound Ca2+ ion in the protein. The disulfide bonds are apparently protected against the reducing agent in the native structure. The fast phase reaction rate is, however, decreased with an increase in the concentration of urea, and the disulfide bond shows extraordinary superreactivity in native conditions. It is 140 times more reactive than normal disulfides in the fully accessible state, and three-disulfide alpha-lactalbumin produced by the fast phase assumes nativelike structure under a strongly native condition. As ionic strength does not affect the superreactivity of this disulfide bond, electrostatic contributions to the reactivity must be negligible. Inspection of the disulfide bond geometry based on the refined X-ray coordinates of baboon alpha-lactalbumin [Acharya et al. (1989) J. Mol. Biol. 208, 99-127] and comparison of the geometry with those in five other proteins clearly demonstrate that the superreactivity arises from the geometric strain imposed on this disulfide bond by the native structure folding. Relationships of the disulfide strain energy to the protein stability and the disulfide reactivity are discussed.  相似文献   

7.
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.  相似文献   

8.
We investigated the in vitro folding of an oxidized proinsulin (methionine‐arginine human lyspro‐proinsulin S‐sulfonate), using cysteine as a reducing agent at 5°C and high pH (10.5–11). Folding intermediates were detected and characterized by means of matrix‐assisted laser desorption ionization mass spectrometry (MALDI‐MS), reversed‐phase chromatography (RPC), size‐exclusion chromatography, and gel electrophoresis. The folding kinetics and yield depended on the protein and cysteine concentrations. RPC coupled with MALDI‐MS analyses indicated a sequential formation of intermediates with one, two, and three disulfide bonds. The MALDI‐MS analysis of Glu‐C digested, purified intermediates indicated that an intra‐A‐chain disulfide bond formed first among A6, A7, and A11. Various non‐native intra‐A (A20 with A6, A7, or A11), intra‐B (between B7 and B19), and inter‐A‐B disulfide bonds were observed in the intermediates with two disulfide bonds. The intermediates with three disulfide bonds had mainly the non‐native intra‐A and intra‐B bonds. At a cysteine‐to‐proinsulin‐SH ratio of 3.5, all intermediates with the non‐native disulfide bonds were converted to properly folded proinsulin via disulfide bond reshuffling, which was the slowest step. Aggregation via the formation of intermolecular disulfide bonds of early intermediates was the major cause of yield loss. At a higher cysteine‐to‐proinsulin‐SH ratio, some intermediates and folded MR‐KPB‐hPI were reduced to proteins with thiolate anions, which caused unfolding and even more yield loss than what resulted from aggregation of the early intermediates. Reducing protein concentration, while keeping an optimal cysteine‐to‐protein ratio, can improve folding yield significantly. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
Disulfide bonds are required to stabilize the folded conformations of many proteins. The rates and equilibria of processes involved in disulfide bond formation and breakage can be manipulated experimentally and can be used to obtain important information about protein folding and stability. A number of experimental procedures for studying these processes, and approaches to interpreting the resulting data, are described here.  相似文献   

10.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

11.
Small-molecule diselenides show considerable potential as catalysts of oxidative protein folding. To explore their scope, diselenide-containing redox buffers were used to promote the folding of proteins that varied in properties such as size, overall tertiary structure, number of disulfide bonds, pI value, and difficulty of in vitro folding. Diselenides are able to catalyze the oxidative folding of all proteins tested, providing significant increases in both rate and yield relative to analogous disulfides. Compared to the disulfide-linked dimer of glutathione (the most commonly used oxidant for in vitro protein folding), selenoglutathione provided markedly improved efficiencies in the folding of biotechnologically important proteins such as hirudin, lysozyme, human epidermal growth factor and interferon α-2a. Selenoglutathione also enhances the renaturation of more challenging targets such as bovine serum albumin, whose native state contains 17 disulfide bonds, and the Fab fragment of an antibody. In the latter case, micromolar amounts of selenoglutathione are able to match the modest yield provided by a previously optimized redox buffer, which contains millimolar levels of glutathione. Taken together, the folding reactions of these diverse proteins exemplify the advantages and limitations of diselenide catalysts.  相似文献   

12.
Hatahet F  Ruddock LW 《The FEBS journal》2007,274(20):5223-5234
Protein folding in the endoplasmic reticulum is often associated with the formation of native disulfide bonds. Their primary function is to stabilize the folded structure of the protein, although disulfide bond formation can also play a regulatory role. Native disulfide bond formation is not trivial, so it is often the rate-limiting step of protein folding both in vivo and in vitro. Complex coordinated systems of molecular chaperones and protein folding catalysts have evolved to help proteins attain their correct folded conformation. This includes a family of enzymes involved in catalyzing thiol-disulfide exchange in the endoplasmic reticulum, the protein disulfide isomerase (PDI) family. There are now 17 reported PDI family members in the endoplasmic reticulum of human cells, but the functional differentiation of these is far from complete. Despite PDI being the first catalyst of protein folding reported, there is much that is still not known about its mechanisms of action. This review will focus on the interactions of the human PDI family members with substrates, including recent research on identifying and characterizing their substrate-binding sites and on determining their natural substrates in vivo.  相似文献   

13.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   

14.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

15.
Catalytic properties of hen egg white lysozyme were analyzed during the renaturation of the enzyme from completely reduced and denatured material. The formation of intermediate folding products and the generation of native lysozyme was monitored by acetic acid/urea electrophoresis. The results showed that during the beginning of renaturation almost all reduced and denatured lysozyme is converted to forms possessing lower compactness than native lysozyme, probably as a result of formation of only one or two disulfide bonds. Kinetic analysis of lysozyme during renaturation showed that the generation of lysozyme with four disulfide bonds was not necessarily equivalent to the formation lysozyme with native-like catalytic properties. It appeared that the formation rate of the structures of the structures of the substrate binding site and of the catalytic site were limited by the generation of four disulfide bonds containing lysozyme. The catalytic properties of intermediate folding products made it evident that the final structures of the substrate binding site and of the catalytic site were formed after the generation of all disulfide bonds.  相似文献   

16.
The alpha-lactalbumins form stable molten globule states under a range of conditions, with the low pH form being the best characterized. The stability of the molten globule varies among different members of this family, but the origin of the stability difference is not clear. We compare the folding and stability of alpha-subdomain constructs of human and bovine alpha-lactalbumin. Previous studies have demonstrated that the isolated alpha-subdomain of human alpha-lactalbumin folds and forms a molten globule state. The minimum core construct has been defined to include the A, B, and D alpha-helices and the C-terminal 3(10) helix. A construct corresponding to the same region of bovine alpha-lactalbumin is much less structured and less stable than the human alpha-lactalbumin construct. Addition of the C-helix to generate a 75-residue bovine construct does not lead to a significant increase in structure or stability. This construct (AB-CD/3(10)) contains the entire alpha-subdomain of bovine alpha-lactalbumin. Thus molten globule formation in the human protein, but not in the bovine protein, can be rationalized on the basis of a stable alpha-subdomain. Interactions involving more of the protein chain are required to generate a well structured molten globule in the bovine protein. Comparison of AB-CD/3(10) to the molten globule formed by the intact protein and to the protein with the 6-120 disulfide reduced indicates that both the beta-subdomain and the 6-120 disulfide play a role in stabilizing the bovine alpha-lactalbumin molten globule.  相似文献   

17.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins by PDI, which in turn is oxidized by endoplasmic reticulum oxidase (Ero1). Here we demonstrate that overexpression of Ero1 results in the acceleration of disulfide bond formation and correct protein folding. In contrast, lowering the levels of glutathione within the cell resulted in acceleration of disulfide bond formation but did not lead to correct protein folding. These results demonstrate that lowering the level of glutathione in the cell compromises the reductive pathway and prevents disulfide bond isomerization from occurring efficiently, highlighting the crucial role played by glutathione in native disulfide bond formation within the mammalian endoplasmic reticulum.  相似文献   

18.
Horng JC  Demarest SJ  Raleigh DP 《Proteins》2003,52(2):193-202
Many proteins are capable of populating partially folded states known as molten globule states. Alpha-lactalbumin forms a molten globule under a range of conditions including low pH (the A-state) and at neutral pH in the absence of Ca(2+) with modest amounts of denaturant. The A-state is the most thoroughly characterized and thought to mimic a kinetic intermediate populated during refolding at neutral pH. We demonstrate that the properties and interactions that stabilize the A-state and the pH 7 molten globule of human alpha-lactalbumin differ. The unfolding of the wild-type protein is compared to the unfolding of a variant that lacks the 6 - 120 disulfide bond and to an autonomously folded peptide construct that we have previously shown represents the minimum core structure of the A-state of human alpha-lactalbumin. Studies conducted at pH 2 and 7 show that the disulfide makes little contribution to the stability of the molten globule at pH 7 but is important at pH 2. In contrast, the beta-subdomain of the protein is less important at pH 2 than at pH 7. The role of helix propensity in stabilizing the different forms of the molten globule state is examined and it is shown that it cannot account for the differences. The strikingly different behavior observed at pH 2 and 7 indicates that the A-state may not be a rigorous mimic of the folding intermediate populated at pH 7.  相似文献   

19.
The common glycoprotein hormone alpha-subunit (GPH-alpha) contains five intramolecular disulfide bonds, three of which form a cystine knot motif (10-60, 28-82, and 32-84). By converting each pair of cysteine residues of a given disulfide bond to alanine, we have studied the role of individual disulfide bonds in GPH-alpha folding and have related folding ability to secretion and assembly with the human chorionic gonadotropin beta-subunit (hCG-beta). Mutation of non-cystine knot disulfide bond 7-31, bond 59-87, or both (leaving only the cystine knot) resulted in an efficiently secreted folding form that was indistinguishable from wild type. Conversely, the cystine knot mutants were inefficiently secreted (<25%). Furthermore, mutation of the cystine knot disulfide bonds resulted in multiple folding intermediates containing 1, 2, or 4 disulfide bonds. High performance liquid chromatographic separation of intracellular and secreted forms of the folding intermediates demonstrated that the most folded forms were preferentially secreted and combined with hCG-beta. From these studies we conclude that: (i) the cystine knot of GPH-alpha is necessary and sufficient for folding and (ii) there is a direct correlation between the extent of GPH-alpha folding, its ability to be secreted, and its ability to heterodimerize with hCG-beta.  相似文献   

20.
Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号