首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary When the oxygen binding of the hemocyanin from the lobsterHomarus americanus was analysed in terms of the nested Monod-Wyman-Changeux model, it revealed that protons affect the allosteric equilibria between four conformations. Applying computer simulations we have demonstrated the specific influence of the three different allosteric equilibrium constants on the affinity and cooperativity of oxygen binding.  相似文献   

2.
The binding of carbon monoxide to hemocyanin from the crab Scylla serrata has been studied by thin layer optical absorption and front face fluorescence techniques. The binding to the monomeric form is completely noncooperative whereas the binding to the native oligomeric form is found to be weakly but definitely cooperative. An analysis based on the MWC model of the oxygen and carbon monoxide binding curves indicates that the allosteric constant, L, describing the equilibrium between the 2 unligated forms is different for each ligand. This implies that at least 3 allosteric forms are needed to characterize the binding of oxygen and carbon monoxide to this hemocyanin.  相似文献   

3.
The temperature dependence of the oxygen binding equilibria and kinetics of Panulirus interruptus hemocyanin has been analyzed within the context of the two-state allosteric model. Oxygenation of the T-state is characterized by a more negative value of DeltaH than that of the R-state; therefore, cooperative effects in oxygen binding to P. interruptus hemocyanin are thermodynamically governed by favorable entropy changes. The allosteric transition in the unliganded derivative shows an enthalpy-entropy compensation effect. The activation enthalpies for oxygenation and deoxygenation of the T-state are larger than those for the R-state, while the activation entropies are favorable for the T-state and unfavorable for the R-state. Thus, the activation free energies for oxygen binding to the T- and R-states are similar, while for the deoxygenation reaction DeltaG++ is smaller for the T-state. The analysis reported confirms the applicability of the Monod-Wyman-Changeux two-state allosteric model to P. interruptus hemocyanin and yields a complete thermodynamic characterization of oxygen binding under both equilibrium and dynamic regimes.  相似文献   

4.
Octopus vulgaris hemocyanin in 11 S aggregation state binds oxygen following a noncooperative oxygen saturation curve with Hill coefficient n = 1. Under the same conditions the equilibrium and kinetics of the reaction with cyanide and other ligands are indicative of an anticooperative behavior displaying different characteristics for the different ligands. The data are consistent with an induced-fit type allosteric model which assumes for the 11 S subunit of O. vulgaris hemocyanin an annular structure made up by five identical domains each containing one binding site whose reactivity is near-neighbor regulated.  相似文献   

5.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

6.
The effect of oxygen on the distribution of hemocyanin from Levantina hierosolima among the three sedimenting species 20, 60, and 100 S was determined under two sets of experimental conditions: (a) at pH 7.63 in the absence of Ca2+, where oxygen binding in noncooperative; (b) at pH 8.20 in the presence of 2 x 10-3 M Ca2+, where oxygen binding is cooperative. A comparison of the results in the two cases eliminates the possibility that equilibrium between species with different oxygen affinities is responsible for the cooperative behavior. Cooperative oxygen binding was demonstrated for the 20S subunits at pH 8.80 and 1 x 10-3 M Ca2+. Under these conditions, the concentration of calcium is sufficient to affect the oxygen affinity, but the concentration of calcium plus proton is not sufficient to bring about association. The findings exclude interactions among 20S subunits as a basis for cooperativity in hemocyanin.  相似文献   

7.
The oxygen binding properties of hemocyanins are regulated on a short time scale by effectors such as l-lactate, urate and protons, and on longer time scales by expression of the different types of subunits. For Astacus leptodactylus it was shown previously that acclimation to higher temperatures leads to increased levels of a 6-meric hemocyanin species, whereas at lower temperatures the 12-meric form prevails. Here we show that the temperature dependence of the two forms supports the idea, that the maintenance of high affinity towards oxygen is the driving force for the differential expression of these hemocyanins. Furthermore, the two different types of hemocyanin differ not only in the affinity to oxygen, but also with respect to their interaction with l-lactate: while the 12-meric form displays a normal shift in oxygen affinity upon the addition of l-lactate this allosteric regulation is absent in the 6-meric form. Exclusive binding of l-lactate to the 12-meric form was supported by isothermal titration calorimetry. These results indicate that l-lactate binds either at the interface between the two hexamers or at subunit α′ which is responsible for the formation of the 12-mers and is not present in the 6-meric form. Urate has a comparable effect on the oxygen affinity of 6-meric and 12-meric forms and also binds to a similar extent to the oxygenated state as determined by isothermal titration calorimetry. Thus, urate and l-lactate do not seem to share the same binding sites. Interestingly, urate binding sites with no allosteric effect seem to exist, which is unusual. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

8.
A high precision, two-dimensional study of oxygen and carbon monoxide binding to Panulirus interruptus hemocyanin has been carried out. Global data analysis of three types of experiments, probing the molecule in its various states of CO and O2 ligation, revealed the entire hexamer to be the basic allosteric unit involved in a two-state mechanism. The co-operativity and linkage of the two ligands are presented in terms of derivative Hill plot surfaces extended along co-ordinates of CO and O2 activities giving a detailed and comprehensive view of the binding behavior. Among the findings is an apparent high co-operativity of carbon monoxide binding at high oxygen activity. The results are discussed in view of a general mechanism for co-operative behavior found in larger hemocyanin aggregates concerning "nested" allosteric interactions.  相似文献   

9.
The interaction of a number of lanthanide ions (namely terbium, praseodymium, erbium, lanthanum, gadolinium and europium) with Panulirus interruptus hemocyanin has been studied.Results from O2-binding experiments indicate that all these ions may substitute for calcium as allosteric effectors of hemocyanin. Addition of the lanthanides to deoxygenated Panulirus hemocyanin saturated with Tb3+ results in a quenching of the terbium luminescence. The highly efficient quenching observed in the case of Eu3+ may indicate energy-transfer between Tb3+ and Eu3+. Since energy-transfer between lanthanides is only effective over very short distances, the data suggest that some of the cation binding sites of Panulirus hemocyanin are clustered.  相似文献   

10.
Hemocyanins are large respiratory proteins of arthropods and mollusks, which bind oxygen with very high cooperativity. Here, we investigated the relationship between oxygen binding and structural changes of the 24-mer tarantula hemocyanin. Oxygen binding of the hemocyanin was detected following the fluorescence intensity of the intrinsic tryptophans. Under the same conditions, structural changes were monitored by the non-covalently bound fluorescence probe Prodan (6-propionyl-2-(dimethylamino)-naphthalene), which is very sensitive to its surroundings. Upon oxygen binding of the hemocyanin a red shift of 5 nm in the emission maximum of the label was observed. A comparison of oxygen binding curves recorded with tryptophan and Prodan emission revealed that structural changes in tarantula hemocyanin lag behind oxygen binding at the beginning of oxygenation. Analyses based on the nested two-state model, which describes cooperative oxygen binding of hemocyanins, indicated that the transition monitored by Prodan emission is closely related to one of the four conformations (rR) predicted for the allosteric unit. Earlier, the allosteric unit of tarantula hemocyanin was found to be the 12-mer half-molecule. Here, fluorescence titration revealed that the number of Prodan binding sites/24-mer tarantula hemocyanin is approximately 2, matching the number of allosteric units/hemocyanin. Based on the agreement between oxygen binding curves and fluorescence titration we concluded that Prodan monitors a conformational transition of the allosteric unit.  相似文献   

11.
Hemocyanins are oligomeric metalloproteins containing binuclear copper centers that reversibly combine with oxygen molecules. The structural stability and functional properties of these proteins are modified by divalent cations. Equilibrium dialysis was used to study the reversible interaction of Callinectes sapidus and Limulus polyphemus hemocyanins with the divalent cations calcium, cadmium, zinc, copper, and mercury. The number of binding sites and association constants for each cation were obtained from an analysis of the binding data by a nonlinear least-squares minimization procedure. Spectral analysis showed Limulus hemocyanin to possess two mercury-reactive sulfhydryl groups per subunit (Kassoc = 2.02 X 10(45) M-1). Callinectes hemocyanin contains only one such group (Kassoc = 2.29 X 10(34) M-1). Cadmium and zinc are shown to substitute for calcium ions. Oxygen binding studies with Limulus hemocyanin showed that all five divalent metal ions increase its oxygen affinity. Calcium ions increase cooperativity of oxygen binding, while heavy-metal ions have an opposite effect. Binding of two mercuric ions per Limulus hemocyanin subunit irreversibly fixes the 48 subunit aggregate in a high-affinity noncooperative conformational state. These results offer a striking contrast to the functional consequences of heavy-metal ion interactions with Callinectes hemocyanin [Brouwer, M., Bonaventura, C., & Bonaventura, J. (1982) Biochemistry 21, 2529-2538]. The functional alterations associated with metal ion interactions are discussed within the context of an extension of the two-state model for allosteric transitions of Monod et al. [Monod, J., Wyman, J., & Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118]. Incubation of Limulus oxy- or deoxyhemocyanin with mercuric chloride results in the conversion of 60% of the binuclear copper sites to stable half-apo sites. The remaining active sites are stable with respect to mercury-induced copper displacement when oxygen is bridging both coppers. In the absence of oxygen these sites will eventually lose both copper atoms. Under the same conditions 50% of the binuclear copper sites of Callinectes deoxyhemocyanin are converted to half-apo sites. In this case oxygen completely protects against copper displacement [Brouwer, M., Bonaventura, C., & Bonaventura, J. (1982) Biochemistry 21, 2529-2538]. The binuclear copper center of Busycon carica is not affected at all, demonstrating profound differences between the active sites of hemocyanins of a chelicerate arthropod (Limulus), a crustacean arthropod (Callinectes), and a gastropod mollusc (Busycon).  相似文献   

12.
The hemocyanin from the crayfish Jasus edwardsii(=lalandii) has been studied using ultracentrifugation, viscosity, circular dichroism and oxygen binding techniques. Sedimentation velocity experiments at pH 7.0 indicated the presence of principal species with S 20w=16.4 S, and at higher pH the presence of a species with S20,w=5.2S. Sedimentation equilibrium experiments yielded molecular weights of 490 000 and 81 000 respectively, indicating that the larger unit is a hexamer of the monomer unit. However, preliminary experiments with gel filtration and electrophoresis under denaturing conditions indicate that more than one monomer species may be present with molecular weight in the range 76-100 000. Circular dichroism (CD) spectra are presented at pH 7.0,8.6,10.0 and 11.0 for oxy-, deoxy- and apo-hemocyanins. Slight differences were observed in the magnitude of the bands in the presence or absence of Mg++. Oxygen binding studies have been made at pH 6.1,7.0,8.8 and 10.6, in the presence of 0.01 M MgCl2. The extent of cooperative binding was indicated by a maximum value of n=3.7, and a pronounced bohr effect was observed.  相似文献   

13.
The crystal structure of Limulus polyphemus subunit type II hemocyanin in the deoxygenated state has been determined to a resolution of 2.18 A. Phase information for this first structure of a cheliceratan hemocyanin was obtained by molecular replacement using the crustacean hemocyanin structure of Panulirus interruptus. The most striking observation in the Limulus structure is the unexpectedly large distance of 4.6 A between both copper ions in the oxygen-binding site. Each copper has approximate trigonal planar coordination by three histidine N epsilon atoms. No bridging ligand between the copper ions could be detected. Other important new discoveries are (1) the presence of a cis-peptide bond between Glu 309 and Ser 310, with the carbonyl oxygen of the peptide plane hydrogen bonded to the N delta atom of the copper B ligand His 324; (2) localization of a chloride-binding site in the interface between the first and second domain; (3) localization of a putative calcium-binding site in the third domain. Furthermore, comparison of Limulus versus Panulirus hemocyanin revealed considerable tertiary and quaternary rigid body movements, although the overall folds are similar. Within the subunit, the first domain is rotated by about 7.5 degrees with respect to the other two domains, whereas within the hexamer the major movement is a 3.1 degrees rotation of the trimers with respect to each other. The rigid body rotation of the first domain suggests a structural mechanism for the allosteric regulation by chloride ions and probably causes the cooperative transition of the hexamer between low and high oxygen affinity states. In this postulated mechanism, the fully conserved Phe49 is the key residue that couples conformational changes of the dinuclear copper site into movements of the first domain.  相似文献   

14.
Cyanide binding to Chromatium vinosum ferricytochrome c′ has been studied to further investigate possible allosteric interactions between the subunits of this dimeric protein. Cyanide binding to C. vinosum cytochrome c′ appears to be cooperative. However, the cyanide binding reaction is unusual in that the overall affinity of cyanide increases as the concentration of cytochrome c′ decreases and that cyanide binding causes the ligated dimer to dissociate to monomers as shown by gel-filtration chromatography. Therefore, the cyanide binding properties of C. vinosum ferricytochrome c′ are complicated by a cyanide-linked dimer to monomer dissociation equilibrium of the complexed protein. The dimer to monomer dissociation constant is 20-fold smaller than that for CO linked dissociation constant of ferrocytochrome c′. Furthermore, the pH dependence of both the intrinsic equilibrium binding constant and the dimer to monomer equilibrium dissociation constant was investigated over the pH range of 7.0 to 9.2 to examine the effect of any ionizable groups. The equilibrium constants did not exhibit a significant pH dependence over this pH range.  相似文献   

15.
Oxygen binding to sickle cell hemoglobin.   总被引:1,自引:0,他引:1  
The extent of oxygen binding and light scattering of concentrated solutions of hemoglobin S have been determined as a function of oxygen partial pressure using a thin film optical cell. Nearly reversible oxygen binding is observed as witnessed by the small hysteresis found between slow deoxygenation and reoxygenation runs. High co-operativity is noted from unusually large concentration-dependent Hill coefficients when aggregated hemoglobin S is present. The application of linkage theory with the inclusion of non-ideal solution properties permits a test of various simple models for oxygen binding to both the monomer (α2β2s) and polymer (aggregated) phase. It is concluded that oxygen binding to the polymer is either negligible or small under present experimental conditions. Phase diagrams of the solution concentration in equilibrium with polymer phase as a function of oxygen partial pressure are derived using best fit values of polymer parameters.  相似文献   

16.
Addition of Panulirus hemocyanin to NaCl solutions produces marked changes in the 23Na relaxation parameters; they show that sodium ions interact with binding sites on the protein and exchange rapidly with the bulk. The observed non-lorentzian lineshapes and the non-exponential decay of the transverse magnetization indicate that non-extreme narrowing conditions apply and give information on the dynamics of the interaction. Panulirus hemocyanin has at least two classes of Na+ binding sites; the binding constant of the more strongly bound sodium ions is in the order of 1 X 10(2) M-1. Competition between Na+ and Ca2+ for protein binding sites is demonstrated by the effect of Ca2+ on the 23Na relaxation parameters. However, only the more strongly bound Na+ are displaced by Ca2+. The number of Ca2+ needed to displace these sodium ions is 3--5 per oxygen binding site. The 23Na relaxation parameters are influenced also by the state of oxygenation of the protein, indicating a linkage between Na+ and oxygen binding. The simplest interpretation of the data is that sodium ions bind more strongly to oxyhemocyanin in agreement with oxygen equilibrium experiments.  相似文献   

17.
Continuous oxygen binding curves for two arthropodan hemocyanins were performed at different pH values ranging from 7.0 to 8.7 and in the presence of physiological concentrations of the bivalent ions Ca2+ and Mg2+. The arthropods Eurypelma californicum and Homarus americanus are classified as chelicerata and crustaceans, respectively. Their structurally well-characterized hemocyanins are composed of, in the case of E. californicum 24 subunits, and in the case of H. americanus 12 subunits. The role of protons as allosteric effectors of the oxygen binding was analysed in terms of the nesting model, which assumes hierarchies of allosteric equilibria that are based on obvious structural hierarchies. For each hemocyanin, the smallest structural repeating unit, the 12-mer or the 6-mer, respectively, was regarded as the "allosteric unit". Two allosteric units are allosterically coupled within the native molecules. The analysis revealed that in accordance with the postulations of the classical Monod-Wyman-Changeux model protons as allosteric effectors do not change the oxygen affinities of the four postulated conformations, but influence the allosteric equilibria between them at two different hierarchical levels. Model-independent determination of the affinity constants for the binding of the first and the last oxygen molecule to the native hemocyanins and to the isolated half-molecules confirmed the affinities calculated according to the nesting model. The stepwise establishment of new conformations during the assembly process from monomers to the structurally identical repeating unit and further on to the native molecule is shown. Possible physiological advantages of allosterically coupled allosteric units in contrast to allosterically uncoupled ones are thought to be (1) the option to regulate oxygen binding on different levels of structural hierarchy and (2) the increase of the oxygen-carrying capacity.  相似文献   

18.
The effect of calcium and magnesium ions on the oxygen equilibrium of Eisenia hemoglobin was investigated by using an automatic oxygenation apparatus. On addition of calcium chloride (20 mM, pH 7.5), oxygen affinity and cooperativity (nmax) of the hemoglobin increased markedly (p 50:3.82 mmHg, nmax :9.76). The effect of magnesium on the oxygen equilibrium was weaker than that of calcium. The top asymptotes of the oxygen equilibrium curve shifted to the left by adding cations whereas the bottom asymptotes remained almost unchanged. The free energy of heme-heme interaction (delta GR,T) also increased remarkably. These results imply the binding of calcium to Eisenia hemoglobin in the oxygenated form and its physiological role in modulating the oxygen affinity and cooperativity.  相似文献   

19.
Hemocyanin (Hc) is an oxygen carrier protein in which oxygen binding is regulated by allosteric effectors such as H+ and l-lactate. Isothermal titration calorimetric measurements showed that l-lactate binds to dodecameric and heterohexameric Hc and to the CaeSS3 homohexamer but not to the CaeSS2 monomer. The binding of lactate caused no change in the optical absorption and x-ray absorption spectra of either oxy- or deoxy-Hc, suggesting that no structural rearrangement of the active site occurred. At pH 6.5, the oxygen binding rate constant kobs obtained by flash photolysis showed a significant increase upon addition of l-lactate, whereas l-lactate addition had little effect at pH 8.3. Lactate binding caused a concentration-dependent shift in the interhexameric distances at pH 6.5 based on small angle x-ray scattering measurements. These results show that l-lactate affects oxygen affinity at pH 6.5 by modulating the global structure of Hc without affecting its binuclear copper center (the active site). In contrast to this, the active site structure of deoxy-Hc is affected by changes in pH (Hirota, S., Kawahara, T., Beltramini, M., Di Muro, P., Magliozzo, R. S., Peisach, J., Powers, L. S., Tanaka, N., Nagao, S., and Bubacco, L. (2008) J. Biol. Chem. 283, 31941–31948). Upon addiction of lactate, the kinetic behavior of oxygen rebinding for Hc was heterogeneous under low oxygen concentrations at pH 6.5 due to changes in the T and R state populations, and the equilibrium was found to shift from the T toward the R state with addition of lactate.  相似文献   

20.
Hemocyanins from Crustacea usually are found as 1 × 6 or 2 × 6-meric assemblies. An exception is the hemocyanin isolated from thalassinidean shrimps where the main component is a 24-meric structure. Our analysis of oxygen binding data of the thalassinidean shrimp Upogebia pusilla based on a three-state MWC-model revealed that despite the 24-meric structure the functional properties can be described very well based on the hexamer as allosteric unit. In contrast to the hemocyanins from other thalassinidean shrimps the oxygen affinity of hemocyanin from U. pusilla is increased upon addition of l-lactate. A particular feature of this hemocyanin seems to be that l-lactate already enhances oxygen affinity under resting conditions which possibly compensates the rather low intrinsic affinity observed in absence of l-lactate. The fast rate of oxygen dissociation might indicate that in this hemocyanin a higher cooperativity is less important than a fast response of saturation level to changes in oxygen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号