首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymorphism of metallothioneins in the digestive gland of naturally occurring (control) and experimentally Cd-exposed mussels Mytilus galloprovincialis (200 μg Cd l–1; 14 days) was studied by applying the conventional methods of Sephadex column liquid chromatography (G-75 and DEAE A-25), and by an electrochemical method (DPASV) for determination of Cd, Zn and Cu concentrations in chromatographic fractions. In both control and Cd-exposed mussels, two distinct molecular mass components of the metallothioneins, monomeric (MT-10) and dimeric (MT-20), were resolved by Sephadex G-75 gel filtration chromatography. In control mussels, the MT-10 component was predominantly expressed as containing markedly higher constitutive levels of Zn (100×) and Cu (10×) than of Cd. Each of these two molecular mass components was further resolved into seven metal-rich peaks by anion-exchange chromatography. In Cd-exposed mussels the larger proportion of Cd was bound to the MT-20 than to the MT-10 component, suggesting that the dimeric component may be considered as a primarily inducible metallothionein. The elution positions of metal-binding maxima of Cd-exposed and control mussels on the respective DEAE chromatographic profiles were comparable. A great similarity in elution positions of Cd maxima between the composite and single-specimen samples was also observed. Our study confirms a high multiplicity of MT forms in mussels from the Mytilus genus not only under the laboratory high-level metal exposure conditions, but also at a natural seawater metal exposure level. The ecotoxicological significance of dimeric and monomeric MT forms, as well as their possible application in the biomonitoring of seawater for trace metals, has been considered. Electronic Publication  相似文献   

2.
1. The effects of heavy metals on lipid peroxidation in the gills and digestive gland of mussels exposed for six days to Cu2+, Cd2+ or Zn2+ (40 μg/l/animal) were investigated.2. In the tissues of Cu-exposed mussels a significant increase of the level of malondialdehyde (MDA), which is indicative of the peroxidative process, and a decrease of the concentration of glutathione were observed.3. Moreover, in the digestive gland of mussels, copper exposure results in an increase of other carbonyl compounds and in the lysosomal accumulation of lipofuscin granules.4. The exposure of mussels to Zn or to Cd did not elicit any of the above effects.5. The results are discussed in relation to the possible role that Cu-induced lysosomal lipofuscin accumulation may play in heavy metal detoxification.  相似文献   

3.
4.
This study evaluated clams as bioindicators of fecal protozoan contamination using three approaches: (i) clam tissue spiking experiments to compare several detection techniques; (ii) clam tank exposure experiments to evaluate clams that had filtered Cryptosporidium oocysts from inoculated water under a range of simulated environmental conditions; (iii) sentinel clam outplanting to assess the distribution and magnitude of fecal contamination in three riverine systems in California. Our spiking and tank experiments showed that direct fluorescent antibody (DFA), immunomagnetic separation (IMS) in combination with DFA, and PCR techniques could be used to detect Cryptosporidium in clam tissues. The most analytically sensitive technique was IMS concentration with DFA detection of oocysts in clam digestive gland tissues, which detected 10 oocysts spiked into a clam digestive gland 83% of the time. In the tank experiment, oocyst dose and clam collection time were significant predictors for detecting Cryptosporidium parvum oocysts in clams. In the wild clam study, Cryptosporidium and Giardia were detected in clams from all three study regions by IMS-DFA analysis of clam digestive glands, with significant variation by sampling year and season. The presence of C. parvum DNA in clams from riverine ecosystems was confirmed with PCR and DNA sequence analysis.  相似文献   

5.
Autometallography (AMG) and electron probe X-ray microanalysis (EPXMA) were applied in combination to determine the subcellular distribution of Cd and its subcellular ligands in the digestive gland cells of Cd-exposed mussels Mytilus galloprovincialis. Black silver deposits (BSD), which reveal the presence of metals when AMG is applied, were only localized in digestive cell lysosomes. Digestive cell cytoplasm and basophilic cells were devoid of BSD. EPXMA (static probe and X-ray mapping) indicated that Cd, S (possibly associated with metallothioneins or metallothionein-like proteins) and autometallographical Ag ions are co-localized within digestive cell lysosomes. In addition, Cd and S co-occur in the absence of Ag in the cytosol of digestive cells. AMG does not reveal the presence of the Cd pool strongly bound to cytosolic Cd-metallothionein complexes; only free Cd or Cd supposedly loosely bound to (semi)digested metallothionein within lysosomes was revealed. The levels of lysosomal Cd were indirectly quantified by stereology as the volume density of BSD (VvBSD). Significantly higher values were recorded in Cd-exposed mussels compared with controls at all exposure times. However, VvBSD values were lower at days 7 and 21 than at day 1. This relative decrease in VvBSD reflected another (and confounding) response elicited by Cd-exposure in the digestive epithelium: the volume density of basophilic cells (VvBAS) increased significantly as exposure progressed. Due to this cell-type replacement, the net accumulative capacity of the digestive epithelium decreases at long exposure times.  相似文献   

6.
The histomorphology of the digestive gland of the bivalve mollusk Crenomytilus grayanus from Sivuchya Bay, which is located in the southwest of Peter the Great Bay and subjected to the effect of polluted waters of Tumannaya River, was studied. Pathological changes of the digestive tubules, channels, and connective tissue of the gland were recorded in all the mussels studied. The epithelium of the tubules and channels was characteristic with erosive disturbances and by heavy vacuolization of digestive cells; connective tissue of the gland was specified by cells with lipofuscin (granulocytomes) and by foci of cells necrosis and lysis. Nervous fibers running in the gland were swollen in some mollusks. Strongly basophilic spherical formations, presumably one of the development stages of a parasitic plasmodium, were found in the granulocytomes and among vesicular cells of connective tissue of all the mussels. It was concluded that pathological changes in digestive gland of Gray’s mussel might be caused by chronic pollution of the bay and by parasitic invasion.  相似文献   

7.
Bivalve molluscs concentrate Cryptosporidium oocysts from fecal-contaminated aquatic environments and are therefore useful in monitoring water quality. A real-time TaqMan polymerase chain reaction (PCR) system was developed to allow for large scale quantitative detection of Cryptosporidium spp. in mussels (Mytilus californianus). The TaqMan sensitivity and specificity were compared to conventional PCR and direct immunofluorescent antibody (DFA) assays, with and without immunomagnetic separation (IMS), to identify the best method for parasite detection in mussel hemolymph, gill washings and digestive glands. TaqMan PCR and two conventional PCR systems all detected 1 or more oocysts spiked into 1 ml hemolymph samples. The minimum oocyst detection limit in spiked 5 ml gill wash and 1 g digestive gland samples tested by TaqMan PCR and DFA was 100 oocysts, with a 1 log(10) improvement when samples were first processed by IMS. For tank exposed mussels, TaqMan and conventional PCR methods detected C. parvum in <5% of hemolymph samples. No gill washings from these same mussels tested positive by TaqMan PCR or DFA analysis even with IMS concentration. All methods detected the highest prevalence of C. parvum-positive samples in digestive gland tissues of exposed mussels. In conclusion, the most sensitive method for the detection of C. parvum in oocyst-exposed mussels was IMS concentration with DFA detection: 80% of individual and 100% of pooled digestive gland samples tested positive. TaqMan PCR was comparable to conventional PCR for detection of C. parvum oocysts in mussels and additionally allowed for automated testing, high throughput, and semi-quantitative results.  相似文献   

8.
The use of zinc oxide nanoparticles (nanoZnO) as sunscreens has raised concerns about their safety and release in the aquatic environment through swimming activities and within municipally treated wastewaters. This study's purpose was to examine the effects of nanoZnO on the elemental composition (metallome) in exposed freshwater mussels, Elliptio complanata. Mussels were exposed for 21 days to an environmentally realistic (low) concentration (2 μg/L) of nanoZnO and zinc chloride. The mussels were also exposed to a physically and chemically treated municipal effluent (ME), both alone and in the presence of both forms of Zn. The metallome profile was characterized by the following 15 elements in gills, digestive gland and gonad tissues: Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, V and Zn. The levels of metallothioneins (MT) and lipid peroxidation (LPO) in the digestive gland were also measured as biomarkers of toxic effects. The data revealed that exposure to nanoZnO increased the total levels of Zn, MT and LPO in the digestive gland. Discriminate function analysis revealed that the digestive gland responded the most to exposure to either nanoZnO or Zn2 +. For nanoZnO, the observed changes in Al, As and Mo in the digestive gland offered the best discrimination from dissolved Zn2 +. Co-exposure of nanoZnO with the ME changed the metallome profile closer to dissolved Zn2 +, suggesting a common interaction site within the ME. This was observed in changes in Ni, Cu, Se and Zn in the digestive gland of exposed mussels. Canonical analysis of essential and non-essential elements revealed that exposure to nanoZnO increased the relationships between LPO and the sum of essential elements in the digestive gland. Conversely, exposure to dissolved Zn2 + and the ME decreased the relationship between the sum of non-essential elements and LPO and MT. In conclusion, the use of a “metallomic” approach was used to discriminate changes following exposure to nanoZnO and dissolved Zn in freshwater mussels and provided insights into the interaction of forms of Zn in ME towards mussels.  相似文献   

9.
Indigenous mussels, Mytilus edulis, were collected at sites with supposed different amounts of pollution; Reykjavík harbour, Keflavík harbour, Grafarvogur and Hvalfj?rdur (reference), along the south-western coast of Iceland in March 2000. Mussels from Hvalfj?rdur and Reykjavík harbour were also collected in August the same year. Additionally, mussels were transplanted from the reference site to Reykjavík harbour for 6 weeks during both winter and summer for comparison. DNA adducts were analysed by 32P-post-labelling in gills and digestive gland. Highest adduct levels were found in gill tissue from indigenous mussels collected in Reykjavík harbour. Adduct levels in both tissues from mussels collected at the reference site were below or very close to the detection limit during winter, but seemed to increase a little during summer. Mussels from sites with supposed intermediate pollution had intermediate levels of DNA adducts in gills but did not differ from Reykjavík harbour in digestive gland. No increase in adduct levels was observed in mussels transplanted from the reference site to Reykjavík harbour, except for a slight increase in digestive gland during winter. This study shows that 32P-post-labelling analysis of DNA adducts is sensitive enough to be used on indigenous mussels from relatively pristine areas and that adduct levels are increased in harbours/urban sites. However, transplantation of mussels from a clean site to the harbour for 6 weeks did not result in increased adduct levels in gills, the tissue with the highest adduct levels. The results also indicate that seasonal variation in adduct levels may occur.  相似文献   

10.
Green-lipped mussels Perna viridis, collected from Peng Chau, Hong Kong were allotted into two treatment groups, each containing three experimental tanks. The first treatment group comprised of mussels fed with the diatom Thalassiosira pseudonana only, whereas the second treatment group contained mussels fed with the marine rotifer Brachionus plicatilis, which was in turn fed with diatom T. pseudonana. The mussels were fed two times each day over the experimental period of 14 days. On Days 4, 7 and 14, three mussels were collected from each tank of each treatment group and treated as a single replicate. Fatty acid profiles of diatoms, marine rotifers and the three organs (digestive gland, mantle margin and adductor muscle) of the two mussel groups were analyzed. Results showed that monosaturated fatty acid (MUFA) 16:1n7 was conserved along the food chain among diatoms, marine rotifers and green-lipped mussels. This suggested that 16:1n7 or the ratio of 16:1n7 to saturated fatty acid (SFA) 16:0 can be a trophic marker for diatom T. pseudonana and elevated amounts of 16:1n7 in mussels can reflect the dominance of diatoms in its diet. The present results also showed that rotifers could accumulate MUFA 18:1n7 and PUFA 20:4n6 which were transferred up to mussels, especially 18:1n7, as zooplankton have the ability to synthesize or actively accumulate certain fatty acids that they need for growth or reproduction. There was an increase in the amount of 18:1n7 in the digestive gland of mussels fed with rotifers but the level of this fatty acid remained unchanged in those fed with diatoms, further confirming that 18:1n7 can be used as a marker for the presence of rotifers in trophic relationship studies. The relatively faster responses in the digestive gland of mussels to acquire the fatty acid signatures from their food suggested that the fatty acid profiles in the digestive gland can be a good marker to show a short-term fluctuation of food conditions in the marine environment.  相似文献   

11.
Enzymatic and histopathologic alterations of the digestive gland, gill, gonad, and kidney were studied in Asian clam (Potamocorbula amurensis) in April, 1997 from each of four United States Geological Survey (USGS) stations in the San Francisco Estuary. Stations were selected based on differing body burdens of metallic contaminants in clams (Stn 4.1> 6.1> 8.1>12.5) observed over 7 years. Because no pristine sites are known within the estuary and because no laboratory-reared stocks of P. amurensis were available, clams from station 12.5 served as reference animals. Histopathologic analysis revealed no lesions in clams collected from station 12.5. Mild digestive gland atrophy and moderate distal kidney tubular vacuolation were seen in clams collected from station 8.1. Mild digestive gland atrophy, moderate kidney tubular atrophy, and moderate gill inflammation were seen in clams collected from station 6.1. Lesions found only in clams from station 4.1 were: (1) severe inflammation and moderate atrophy of primary ducts and diverticula, and decreased numbers of heterophagosomes and heterolysosomes in diverticula of the digestive gland; (2) severe gill inflammation; (3) severe kidney tubular atrophy; (4) severe ovarian and testicular inflammation and necrosis; (5) decreased numbers of mature ova; and (6) decreased number of glycogen storage cells in the ovary and testis. Localization of specific enzymes including adenosine triphosphatase (ATP), acid phosphatase (ACP), alkaline phosphatase (ALKP), gamma-glutamyl transpeptidase (GGT), and glucose-6- phosphate dehydrogenase (G6PDH) was performed and correlated, in serial sections with glycogen (PAS) and haematoxylin and eosin stains. Enzymatic analysis revealed: (1) increased digestive diverticula ATP in stations 6.1 and 4.1; (2) decreased digestive diverticula ACP in stations 6.1 and 4.1 and proximal kidney tubular ACP deficiency in station 4.1; (3) no ALKP differences among stations; (4) increased distal kidney tubular GGT at station 12.5 and decreased distal kidney tubular GGT at station 4.1; (5) decreased digestive diverticula G6PDH G6PDH in all stations except 12.5 and decreased proximal kidney tubular G6PDH in stations 8.1 and 6.1. It is possible that other anthropogenic and natural stressors may have affected the results in this study. However, the prevalence and increased severity of lesions in clams with highest metal body burden suggests a contaminant-associated etiology. Enzymatic and histopathologic biomarker alterations identified in this study were positively correlated with the metal body burden. Clams with the higher prevalence of diseases and enzyme alterations also showed a lower condition index and glycogen content in the month when histopathological assessment was performed. Further study will seek to develop enzymatic and histopathologic biomarkers for use in controlled laboratory conditions to help validatethe field study.  相似文献   

12.
The present study was aimed to establish the relationship between the functionality of the digestive gland and physiological rates including SFG (scope for growth) in wild mussels, Mytilus galloprovincilis. The experimental set-up consisted in the evaluation of changes in the morphology of the gland, as well as in the activity of some key digestive enzymes (amylase, laminarinase, cellulase and protease) within a broad range of SFG obtained through manipulation of food ration. The higher SFG values were correlated to an increase in both the size of the digestive gland and the activities of enzymes when expressed in relation to individual. In contrast, no clear relations were observed when the activity of enzymes was expressed in relation to soluble protein, with the exception to amylase. The higher protease activities measured in mussels showing lower SFG may reflect an initial stage of catabolic processes intended to compensate the energy deficit produced by food restriction. The potential use of parameters measured in digestive glands in studies of marine pollution was discussed.  相似文献   

13.
The natural variability in cell proliferation activity in the epithelium of the digestive gland and stomach was investigated in mussels, Mytilus galloprovincialis (Lmk), of different age and tidal level at different seasons. After treating mussels with the thymidine analogue bromodeoxyuridine (BrdU) for 6 hours, BrdU immunohistochemistry was performed every 2 hours for the next 36. The relative proportion of BrdU positive cells was quantified as BrdU labelling (per thousand). Marked seasonal differences were recorded in BrdU labelling, with much higher proliferating activity in summer than in autumn and winter. Cell proliferation seemed not to be significantly dissimilar between mussels of different age (size). In contrast, the digestive gland epithelium of mussels from intertidal and subtidal populations differed not only in the levels but also in the pattern of variation of BrdU labelling, which in intertidal mussels appeared to be modulated by photoperiod and tide, unlike in subtidal mussels, in which variations followed a circatidal pattern.  相似文献   

14.
Enzymatic and histopathologic alterations of the digestive gland, gill, gonad, and kidney were studied in Asian clam (Potamocorbula amurensis) in April, 1997 from each of four United States Geological Survey (USGS) stations in the San Francisco Estuary. Stations were selected based on differing body burdens of metallic contaminants in clams (Stn 4.1&gt; 6.1&gt; 8.1&gt;12.5) observed over 7 years. Because no pristine sites are known within the estuary and because no laboratory-reared stocks of P. amurensis were available, clams from station 12.5 served as reference animals. Histopathologic analysis revealed no lesions in clams collected from station 12.5. Mild digestive gland atrophy and moderate distal kidney tubular vacuolation were seen in clams collected from station 8.1. Mild digestive gland atrophy, moderate kidney tubular atrophy, and moderate gill inflammation were seen in clams collected from station 6.1. Lesions found only in clams from station 4.1 were: (1) severe inflammation and moderate atrophy of primary ducts and diverticula, and decreased numbers of heterophagosomes and heterolysosomes in diverticula of the digestive gland; (2) severe gill inflammation; (3) severe kidney tubular atrophy; (4) severe ovarian and testicular inflammation and necrosis; (5) decreased numbers of mature ova; and (6) decreased number of glycogen storage cells in the ovary and testis. Localization of specific enzymes including adenosine triphosphatase (ATP), acid phosphatase (ACP), alkaline phosphatase (ALKP), gamma-glutamyl transpeptidase (GGT), and glucose-6- phosphate dehydrogenase (G6PDH) was performed and correlated, in serial sections with glycogen (PAS) and haematoxylin and eosin stains. Enzymatic analysis revealed: (1) increased digestive diverticula ATP in stations 6.1 and 4.1; (2) decreased digestive diverticula ACP in stations 6.1 and 4.1 and proximal kidney tubular ACP deficiency in station 4.1; (3) no ALKP differences among stations; (4) increased distal kidney tubular GGT at station 12.5 and decreased distal kidney tubular GGT at station 4.1; (5) decreased digestive diverticula G6PDH G6PDH in all stations except 12.5 and decreased proximal kidney tubular G6PDH in stations 8.1 and 6.1. It is possible that other anthropogenic and natural stressors may have affected the results in this study. However, the prevalence and increased severity of lesions in clams with highest metal body burden suggests a contaminant-associated etiology. Enzymatic and histopathologic biomarker alterations identified in this study were positively correlated with the metal body burden. Clams with the higher prevalence of diseases and enzyme alterations also showed a lower condition index and glycogen content in the month when histopathological assessment was performed. Further study will seek to develop enzymatic and histopathologic biomarkers for use in controlled laboratory conditions to help validatethe field study.  相似文献   

15.
The digestive gland of the freshwater snail Lymnaea stagnalis, exposed to water containing an elevated concentration of aluminium at neutral pH for up to 30 days, followed by a 20 day recovery period, was examined by light and electron microscopy and X-ray microanalysis. Aluminium was localized in the yellow granules present in the digestive and excretory cells and in the green and small granules present in the digestive cells. More aluminium, silicon, phosphorus and sulphur were present in all three granule types from aluminium exposed snails. The number of yellow and green granules from the digestive gland of aluminium exposed snails showed a progressive increase over the experimental period compared to controls. The number and aluminium content of the granules is likely to reflect the role of the digestive gland as a 'sink' for accumulated aluminium. We propose that intracellular monomeric silica is involved in the detoxification of aqueous aluminium which at neutral pH is largely in the form of an insoluble polyhydroxide. The increased amounts of sulphur and phosphorus in the granules are likely to be part of a broad response to metal loading but probably do not play a significant role in the storage and detoxification of aluminium.  相似文献   

16.
We evaluated the effects of short-term exposure to an organophosphate pesticide chlorpyrifos on the digestive gland and gills of the mussel Mytilus galloprovincialis. We studied metabolic activity by quantifying protein content and physiological function responses using acid DNase activity. The increase in protein content was observed in both the target tissues of mussels exposed to 0.03 μg/L chlorpyrifos when compared with control mussels. The pattern of acid DNase activity in digestive gland and gills indicated a tissue-specific response, although the lowest concentration of chlorpyrifos caused changes in acid DNase activity in both tissues. In the digestive gland, the increase of acid DNase activity was observed in mussel exposed to 0.03 μg/L chlorpyrifos, followed by decrease up to 100 μg/L chlorpyrifos. Enzyme activity in the gills showed a dose response effect. The results support the use of acid DNase activity in the digestive gland as a sensitive response to an environmentally relevant range of pesticide concentrations. It may also indicate an effect on mussel physiological status.  相似文献   

17.
The comparative ultrastructural analysis of the digestive tubules of mussels sampled in a strongly hydrocarbons polluted neritic area and in another one reputed unpolluted, revealed important adulterations in the first one, namely that cells of digestive tubules and hyalinocytes within digestive gland display "neoplastic" disorders.  相似文献   

18.
Chlamydia-like organisms have been detected in digestive cells and duct cells of the digestive gland of mussels, Mytilus galloprovincialis, collected from the Basque coast. The organisms appeared as basophilic inclusion bodies within digestive cells and consisted of elongate initial reticulate bodies and previously undescribed condensed forms, interpreted as intermediate bodies. Of the 414 mussels examined by light microscopy, 5.31% showed this type of infection. A second type of chlamydia-like organism was found in nonciliated duct cells. The microorganisms were found mostly free in duct cells and large elongate reticulate bodies, intermediate condensing forms, and fully condensed elementary bodies were clearly distinguished. No serious histopathological or ultrastructural changes were observed in host cells but evidences of a possible localized metabolic damage within infected digestive cells is presented.  相似文献   

19.
This study characterizes intracytoplasmic infections with prokaryote microorganisms in Dreissena sp. (near Dreissena polymorpha) from northeastern Greece and represents the first report of such infections in freshwater bivalves. Light microscope observations of stained tissues revealed basophilic, cytoplasmic inclusion bodies in 87.5% (28/32) of the mussels sectioned. Inclusions in epithelial cells and connective tissues were noted, respectively, in 34.4 and 71.9% of the sample, with 5 mussels (15.6%) having both tissue types infected. Epithelial cell infections were observed in histological sections only in digestive gland tubules and ducts; within tubules, inclusions were present more often in secretory than digestive cells. Connective tissue infections, however, were systemic; among the 32 mussels sectioned, inclusions were found in the gills (65.6%), foot (12.5%), mantle (9.4%), labial palps (6.3%), digestive gland (6.3%), stomach (6.3%), and gonads (3.1%). Cytoplasmic inclusions (maximum dimension, 138 microm) were prominent enough in the gills to be visible in 17.0% of the 247 mussels dissected. Ultrastructurally, prokaryote cells in gill connective tissues were clearly characteristic of Chlamydiales-like organisms, with each intracytoplasmic inclusion containing a loosely packed mixture of elementary, reticulate, intermediate bodies, and blebs. Prokaryote colonies in digestive gland epithelial cells exclusively contained 1 of 4 morphological cell types and were considered Rickettsiales-like. Hexagonal, virus-like particles were present in the cytoplasm of the largest of these Rickettsiales-like prokaryotes. Although host stress was evident from localized cell necrosis and dense hemocyte infiltration, overall infection was fairly benign, with no major, adverse impact on body condition evident among sectioned or dissected mussels. A possible negative effect was partial constriction of gill water tubes, but at the infection intensity observed (typical range 1 to 7 inclusion bodies per section), significant interference with respiration and other metabolic functions of the gills was highly unlikely.  相似文献   

20.
We monitored the differential reduction rates and elimination patterns of Escherichia coli and male-specific (F+) bacteriophage during UV depuration for 48 h in oysters (Crassostrea gigas) and mussels (Mytilus edulis) contaminated by short-term (1 to 3 weeks) and long-term (more than 6 months) exposure to sewage in the marine environment. The time taken to reduce levels of E. coli by 90% was 6.5 h or less in all cases. In contrast, the amounts of time needed to reduce levels of F+ bacteriophage by 90% were considerably longer: 47.3 and 41.3 h (after short- and long-term exposures, respectively) in mussels and 54.6 and 60.8 h (after short- and long-term exposures, respectively) in oysters. No differences in the rates of reduction of indicators of viral pollution following exposure of the shellfish to either short- or long-term sewage contamination were observed. Further experiments were conducted with mussels to determine the relative distributions of E. coli and F+ bacteriophage in tissue before and during depuration. Prior to depuration the majority of E. coli organisms (90.1%) and F+ bacteriophage (87.3%) were detected in the digestive tract (i.e., the digestive gland and intestine). E. coli and F+ bacteriophage were reduced in all tissues except the digestive gland to undetectable levels following depuration for 48 h. Within the digestive gland, levels of F+ bacteriophage were reduced to 30% of initial levels, whereas E. coli was reduced to undetectable levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号